Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 83(1): 214-26, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25332125

RESUMEN

Biofilm formation is the primary virulence factor of Staphylococcus epidermidis. S. epidermidis biofilms preferentially form on abiotic surfaces and may contain multiple matrix components, including proteins such as accumulation-associated protein (Aap). Following proteolytic cleavage of the A domain, which has been shown to enhance binding to host cells, B domain homotypic interactions support cell accumulation and biofilm formation. To further define the contribution of Aap to biofilm formation and infection, we constructed an aap allelic replacement mutant and an icaADBC aap double mutant. When subjected to fluid shear, strains deficient in Aap production produced significantly less biofilm than Aap-positive strains. To examine the in vivo relevance of our findings, we modified our previously described rat jugular catheter model and validated the importance of immunosuppression and the presence of a foreign body to the establishment of infection. The use of our allelic replacement mutants in the model revealed a significant decrease in bacterial recovery from the catheter and the blood in the absence of Aap, regardless of the production of polysaccharide intercellular adhesin (PIA), a well-characterized, robust matrix molecule. Complementation of the aap mutant with full-length Aap (containing the A domain), but not the B domain alone, increased initial attachment to microtiter plates, as did in trans expression of the A domain in adhesion-deficient Staphylococcus carnosus. These results demonstrate Aap contributes to S. epidermidis infection, which may in part be due to A domain-mediated attachment to abiotic surfaces.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Catéteres/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/fisiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Prueba de Complementación Genética , Masculino , Datos de Secuencia Molecular , Ratas Sprague-Dawley , Análisis de Secuencia de ADN , Staphylococcus epidermidis/metabolismo , Factores de Virulencia/genética
2.
PLoS One ; 9(4): e95578, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748147

RESUMEN

Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals.


Asunto(s)
Agricultura , Polvo/análisis , Grano Comestible/microbiología , Microbiología Ambiental , Metagenómica , Microbiota , Porcinos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Biomarcadores , Conjuntos de Datos como Asunto , Genoma , Humanos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN
3.
PLoS Genet ; 9(9): e1003736, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039593

RESUMEN

Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.


Asunto(s)
Citosina Desaminasa/genética , Diploidia , Haploidia , Tasa de Mutación , Desaminasas APOBEC-1 , Adenina/análogos & derivados , Adenina/farmacología , Animales , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Genoma Fúngico/efectos de los fármacos , Humanos , Lampreas/metabolismo , Mutagénesis/efectos de los fármacos , Mutación/genética , Saccharomyces cerevisiae/efectos de los fármacos
4.
mBio ; 4(1): e00537-12, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23404398

RESUMEN

UNLABELLED: To enhance the research capabilities of investigators interested in Staphylococcus aureus, the Nebraska Center for Staphylococcal Research (CSR) has generated a sequence-defined transposon mutant library consisting of 1,952 strains, each containing a single mutation within a nonessential gene of the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) isolate USA300. To demonstrate the utility of this library for large-scale screening of phenotypic alterations, we spotted the library on indicator plates to assess hemolytic potential, protease production, pigmentation, and mannitol utilization. As expected, we identified many genes known to function in these processes, thus validating the utility of this approach. Importantly, we also identified genes not previously associated with these phenotypes. In total, 71 mutants displayed differential hemolysis activities, the majority of which were not previously known to influence hemolysin production. Furthermore, 62 mutants were defective in protease activity, with only 14 previously demonstrated to be involved in the production of extracellular proteases. In addition, 38 mutations affected pigment formation, while only 7 influenced mannitol fermentation, underscoring the sensitivity of this approach to identify rare phenotypes. Finally, 579 open reading frames were not interrupted by a transposon, thus providing potentially new essential gene targets for subsequent antibacterial discovery. Overall, the Nebraska Transposon Mutant Library represents a valuable new resource for the research community that should greatly enhance investigations of this important human pathogen. IMPORTANCE: Infections caused by Staphylococcus aureus cause significant morbidity and mortality in both community and hospital environments. Specific-allelic-replacement mutants are required to study the biology of this organism; however, this process is costly and time-consuming. We describe the construction and validation of a sequence-defined transposon mutant library available for use by the scientific community through the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) strain repository. In addition, complementary resources, including a website (http://app1.unmc.edu/fgx/) and genetic tools that expedite the allelic replacement of the transposon in the mutants with useful selectable markers and fluorescent reporter fusions, have been generated. Overall, this library and associated tools will have a significant impact on studies investigating S. aureus pathogenesis and biology and serve as a useful paradigm for the study of other bacterial systems.


Asunto(s)
Técnicas de Inactivación de Genes , Biblioteca de Genes , Genética Microbiana/métodos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/fisiología , Mutagénesis Insercional , Genotipo , Humanos , Nebraska , Fenotipo
5.
Biol Direct ; 7: 47; discussion 47, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23249472

RESUMEN

UNLABELLED: Clusters of localized hypermutation in human breast cancer genomes, named "kataegis" (from the Greek for thunderstorm), are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. REVIEWERS: This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.


Asunto(s)
Citidina Desaminasa/genética , Lampreas/genética , Familia de Multigenes , Mutación , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Citidina Desaminasa/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Lampreas/metabolismo , Saccharomyces cerevisiae , Análisis de Secuencia de Proteína
6.
PLoS Pathog ; 6(9): e1001108, 2010 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-20862314

RESUMEN

Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT) processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions) that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.


Asunto(s)
Transferencia de Gen Horizontal/fisiología , Variación Genética , Genoma Bacteriano , Membrana Mucosa/microbiología , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/genética , Alelos , Enfermedad Crónica , Regulación Bacteriana de la Expresión Génica , Humanos , Lactante , Filogenia , Polimorfismo de Nucleótido Simple/genética , Recombinación Genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/microbiología , Streptococcus pneumoniae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA