Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 5(3): 448-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38267628

RESUMEN

Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally. Indeed, after chemotherapy, PD-L2-deficient senescent cancer cells are rapidly eliminated and tumors do not produce the senescence-associated chemokines CXCL1 and CXCL2. Accordingly, PD-L2-deficient pancreatic tumors fail to recruit myeloid-derived suppressor cells and undergo regression driven by CD8 T cells after chemotherapy. Finally, antibody-mediated blockade of PD-L2 strongly synergizes with chemotherapy causing remission of mammary tumors in mice. The combination of chemotherapy with anti-PD-L2 provides a therapeutic strategy that exploits vulnerabilities arising from therapy-induced senescence.


Asunto(s)
Neoplasias Pancreáticas , Animales , Ratones , Neoplasias Pancreáticas/metabolismo , Linfocitos T CD8-positivos/patología , Tolerancia Inmunológica , Terapia de Inmunosupresión , Senescencia Celular , Microambiente Tumoral
2.
Cancer Discov ; 13(2): 410-431, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36302218

RESUMEN

Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells. In the context of cancer, immunization with senescent cancer cells elicits strong antitumor protection mediated by DCs and CD8 T cells. Interestingly, this protection is superior to immunization with cancer cells undergoing immunogenic cell death. Finally, the induction of senescence in human primary cancer cells also augments their ability to activate autologous antigen-specific tumor-infiltrating CD8 lymphocytes. Our study indicates that senescent cancer cells can be exploited to develop efficient and protective CD8-dependent antitumor immune responses. SIGNIFICANCE: Our study shows that senescent cells are endowed with a high immunogenic potential-superior to the gold standard of immunogenic cell death. We harness these properties of senescent cells to trigger efficient and protective CD8-dependent antitumor immune responses. See related article by Chen et al., p. 432. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Humanos , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Senescencia Celular , Microambiente Tumoral
3.
Nat Commun ; 13(1): 6840, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369429

RESUMEN

The human transcriptome contains thousands of small open reading frames (sORFs) that encode microproteins whose functions remain largely unexplored. Here, we show that TINCR lncRNA encodes pTINCR, an evolutionary conserved ubiquitin-like protein (UBL) expressed in many epithelia and upregulated upon differentiation and under cellular stress. By gain- and loss-of-function studies, we demonstrate that pTINCR is a key inducer of epithelial differentiation in vitro and in vivo. Interestingly, low expression of TINCR associates with worse prognosis in several epithelial cancers, and pTINCR overexpression reduces malignancy in patient-derived xenografts. At the molecular level, pTINCR binds to SUMO through its SUMO interacting motif (SIM) and to CDC42, a Rho-GTPase critical for actin cytoskeleton remodeling and epithelial differentiation. Moreover, pTINCR increases CDC42 SUMOylation and promotes its activation, triggering a pro-differentiation cascade. Our findings suggest that the microproteome is a source of new regulators of cell identity relevant for cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Sumoilación , Humanos , Neoplasias/genética , Proteínas de Unión al GTP rho/metabolismo , Ubiquitinas/metabolismo , ARN Largo no Codificante/genética
4.
Sci Rep ; 7(1): 6209, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740091

RESUMEN

Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al GTP/metabolismo , MicroARNs/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Osteosarcoma/patología , ARNt Metiltransferasas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proteínas Portadoras/genética , Proliferación Celular , Proteínas de Unión al GTP/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Osteosarcoma/genética , Osteosarcoma/metabolismo , Fosforilación Oxidativa , Proteínas de Unión al ARN , Transducción de Señal , Células Tumorales Cultivadas , ARNt Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...