Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 16(1): 309, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653544

RESUMEN

BACKGROUND: The malaria parasite Plasmodium falciparum utilizes multiple alternative receptor-ligand interactions for the invasion of human erythrocytes. While some P. falciparum clones make use of sialic acid (SA) residues on the surface of the human glycophorin receptors to invade the erythrocyte, others use alternative receptors independent of sialic acid residues. We hypothesized that over the years, intensified malaria control interventions and declining prevalence in The Gambia have resulted in a selection of parasites with a dominant invasion pathways and ligand expression profiles. METHODS: Blood samples were collected from 65 malaria-infected participants with uncomplicated malaria across 3 years (2015, 2016, and 2021). Genetic diversity was determined by genotyping the merozoite surface protein 2 (msp2) polymorphic gene of P. falciparum. Erythrocyte invasion phenotypes were determined using neuraminidase, trypsin, and chymotrypsin enzymes, known to cleave different receptors from the surface of the erythrocyte. Schizont-stage transcript levels were obtained for a panel of 6 P. falciparum invasion ligand genes (eba175, eba181, Rh2b, Rh4, Rh5, and clag2) using 48 successfully cultured isolates. RESULTS: Though the allelic heterozygosity of msp2 repeat region decreased as expected with reduced transmission, there was an increase in infections with more than a single msp2 allelotype from 2015 to 2021. The invasion phenotypes of these isolates were mostly SA independent with a continuous increase from 2015 to 2021. Isolates from 2021 were highly inhibited by chymotrypsin treatment compared to isolates from 2015 and 2016. Higher invasion inhibition for 2021 isolates was further obtained following erythrocyte treatment with a combination of chymotrypsin and trypsin. The transcript levels of invasion ligand genes varied across years. However, levels of clag2, a rhoptry-associated protein, were higher in 2015 and 2016 isolates than in 2021 isolates, while Rh5 levels were higher in 2021 compared to other years. CONCLUSIONS: Overall, these findings suggest increasing mixed infections with an increase in the use of sialic-acid independent invasion pathways by P. falciparum clinical isolates in the Western part of Gambia.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Gambia/epidemiología , Ácido N-Acetilneuramínico , Quimotripsina , Ligandos , Tripsina , Malaria Falciparum/epidemiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-37329848

RESUMEN

Development of resistance to deployed antimalarial drugs is inevitable and needs prompt and continuous discovery of novel candidate drugs. Therefore, the antimalarial activity of 125 compounds from the Medicine for Malaria Ventures (MMV) pathogen box was determined. Combining standard IC50 and normalised growth rate inhibition (GR50) analyses, we found 16 and 22 compounds had higher potencies than CQ respectively. Seven compounds with relatively high potencies (low GR50 and IC50) against P. falciparum 3D7 were further analysed. Three of these were tested on 10 natural P. falciparum isolates from The Gambia using our newly developed parasite survival rate assay (PSRA). According to the IC50, GR50 and PSRA analyses, compound MMV667494 was most potent and highly cytotoxic to parasites. MMV010576 was slow acting but more potent than dihydroartemisinin (DHA) 72 h after exposure. MMV634140 was potent against the laboratory-adapted 3D7 isolate, but 4 out of 10 natural Gambian isolates survived and replicated slowly despite 72 h of exposure to the compound, suggesting potential drug tolerance and risk of resistance development. These results emphasise the usefulness of in vitro testing as a starting point for drug discovery. Improved approaches to data analyses and the use of natural isolates will facilitate the prioritisation of compounds for further clinical development.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/uso terapéutico , Plasmodium falciparum , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Descubrimiento de Drogas
3.
J Antimicrob Chemother ; 77(11): 2946-2955, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35904009

RESUMEN

BACKGROUND: Artemether/lumefantrine is the most commonly used artemisinin-based combination treatment (ACT) for malaria in sub-Saharan Africa. Drug resistance to ACT components is a major threat to malaria elimination efforts. Therefore, rigorous monitoring of drug efficacy is required for adequate management of malaria and to sustain the effectiveness of ACTs. OBJECTIVES: This study identified and described genomic loci that correlate with differences in ex vivo responses of natural Plasmodium falciparum isolates from The Gambia to antimalarial drugs. METHODS: Natural P. falciparum isolates from The Gambia were assayed for IC50 responses to four antimalarial drugs (artemether, dihydroartemisinin, amodiaquine and lumefantrine). Genome-wide SNPs from 56 of these P. falciparum isolates were applied to mixed-model regression and network analyses to determine linked loci correlating with drug responses. Genomic regions of shared haplotypes and positive selection within and between Gambian and Cambodian P. falciparum isolates were mapped by identity-by-descent (IBD) analysis of 209 genomes. RESULTS: SNPs in 71 genes, mostly involved in stress and drug resistance mechanisms correlated with drug responses. Additionally, erythrocyte invasion and permeability loci, including merozoite surface proteins (Pfdblmsp, Pfsurfin), and high-molecular-weight rhoptry protein 2 (Pfrhops2) were correlated with responses to multiple drugs. Haplotypes of pfdblmsp2 and known drug resistance loci (pfaat1, pfcrt and pfdhfr) from The Gambia showed high IBD with those from Cambodia, indicating co-ancestry, with significant linkage disequilibrium between their alleles. CONCLUSIONS: Multiple linked genic loci correlating with drug response phenotypes suggest a genomic backbone may be under selection by antimalarials. This calls for further analysis of molecular pathways to drug resistance in African P. falciparum.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum/genética , Merozoítos , Gambia , Ligandos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Lumefantrina/uso terapéutico , Resistencia a Medicamentos/genética , Malaria/tratamiento farmacológico , Proteínas Protozoarias/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-33020162

RESUMEN

Monitoring of Plasmodium falciparum sensitivity to antimalarial drugs in Africa is vital for malaria elimination. However, the commonly used ex vivo/in vitro 50% inhibitory concentration (IC50) test gives inconsistent results for several antimalarials, while the alternative ring-stage survival assay (RSA) for artemisinin derivatives has not been widely adopted. Here, we applied an alternative two-color flow cytometry-based parasite survival rate assay (PSRA) to detect ex vivo antimalarial tolerance in P. falciparum isolates from The Gambia. The PSRA infers parasite viability by quantifying reinvasion of uninfected cells following 3 consecutive days of drug exposure (10-fold the IC50 of drug for field isolates). The drug survival rate is obtained for each isolate from the slope of the growth/death curve. We obtained parasite survival rates of 41 isolates for dihydroartemisinin (DHA) and lumefantrine (LUM) out of 51 infections tested by ring-stage survival assay (RSA) against DHA. We also determined the genotypes for known drug resistance genetic loci in the P. falciparum genes Pfdhfr, Pfdhps, Pfmdr, Pfcrt, and Pfk13 The PSRA results determined for 41 Gambian isolates showed faster killing and lower variance after treatment with DHA than after treatment with LUM, despite a strong correlation between the two drugs. Four and three isolates were tolerant to DHA and LUM, respectively, with continuous growth during drug exposure. Isolates with the PfMDR1-Y184F mutant variant showed increased LUM survival, though the results were not statistically significant. Sulfadoxine/pyrimethamine (SP) resistance markers were fixed, while all other antimalarial variants were prevalent in more than 50% of the population. The PSRA detected ex vivo antimalarial tolerance in Gambian P. falciparum This calls for its wider application and for increased vigilance against resistance to artemisinin combination therapies (ACTs) in this population.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , África , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Gambia , Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Proteínas Protozoarias/uso terapéutico , Tasa de Supervivencia
5.
Exp Parasitol ; 218: 107969, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32858043

RESUMEN

Invasion of human red blood cells (RBCs) by Plasmodium parasites is a crucial yet poorly characterised phenotype. Two-color flow cytometry (2cFCM) promises to be a very sensitive and high throughput method for phenotyping parasite invasion. However, current protocols require high (~1.0%) parasitemia for assay set-up and need to be adapted for low parasitemia samples, which are becoming increasingly common in low transmission settings. Background fluorescence from nuclei-containing uninfected RBCs and high autologous reinvasion rates (merozoite invasion of donor uninfected RBCs present at 50% assay volume) are some of the limitations to the method's sensitivity to enumerate low parasitemia (<0.5%) with nucleic acid-based stains. Here, we describe modifications for plating unlabeled donor to labeled target RBCs per assay well and for gating parasitemia, that produces accurate quantifications of low reinvasion parasitemia. Plasmodium falciparum 3D7, Dd2 and field isolates at various low and high parasitemia (0.05%-2.0%) were used to set-up SyBr Green 1-based 2cFCM invasion assays. Target RBCs were labeled with CTFR proliferation dye. We show that this dye combination allowed for efficient parasite invasion into target RBCs and that a 1:3 ratio of unlabeled to labeled RBCs per assay greatly skewed autologous reinvasion (p < 0.001). Accuracy of quantifying reinvasion was limited to an assay parasitemia of 0.02% with minimal background interference. Invasion inhibition by enzymatic treatments increased averagely by 10% (p<0.05) across the entire parasitemia range. The effect was greater for samples with <0.5% parasitemia. Overall, a more sensitive method for phenotyping invasion of low P. falciparum parasitemia is described.


Asunto(s)
Citometría de Flujo/métodos , Malaria Falciparum/parasitología , Parasitemia/parasitología , Plasmodium falciparum/aislamiento & purificación , Rastreo Celular/métodos , Colorantes , Eritrocitos/parasitología , Humanos , Fenotipo , Plasmodium falciparum/clasificación , Plasmodium falciparum/fisiología , Recurrencia , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...