Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569212

RESUMEN

Phenolic compounds that are present in pineapple by-products offer many health benefits to the consumer; however, they are unstable to many environmental factors. For this reason, encapsulation is ideal for preserving their beneficial effects. In this work, extracts were obtained by the combined method of solid-state fermentation with Rhizopus oryzae and ultrasound. After this process, the encapsulation process was performed by ionotropic gelation using corn starch, sodium alginate, and Weissella confusa exopolysaccharide as wall material. The encapsulates produced presented a moisture content between 7.10 and 10.45% (w.b), a solubility of 53.06 ± 0.54%, and a wettability of 31.46 ± 2.02 s. The total phenolic content (TPC), antioxidant capacity of DPPH, and ABTS of the encapsulates were also determined, finding 232.55 ± 2.07 mg GAE/g d.m for TPC, 45.64 ± 0.9 µm Trolox/mg GAE for DPPH, and 51.69 ± 1.08 µm Trolox/mg GAE for ABTS. Additionally, ultrahigh performance liquid chromatography (UHPLC) analysis allowed us to identify and quantify six bioactive compounds: rosmarinic acid, caffeic acid, p-coumaric acid, ferulic acid, gallic acid, and quercetin. According to the above, using ionotropic gelation, it was possible to obtain microencapsulates containing bioactive compounds from pineapple peel extracts, which may have applications in the development of functional foods.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36678096

RESUMEN

Previous studies have suggested that graphene oxide (GO) has some antiviral capacity against some enveloped viruses, including SARS-CoV-2. Given this background, we wanted to test the in vitro antiviral ability to GO using the viral plaque assay technique. Two-dimensional graphene oxide (GO) nanoparticles were synthesized using the modified Hummers method, varying the oxidation conditions to achieve nanoparticles between 390 and 718 nm. The antiviral activity of GO was evaluated by experimental infection and plaque formation units assay of the SARS-CoV-2 virus in VERO cells using a titrated viral clinical isolate. It was found that GO at concentrations of 400 µg/mL, 100 µg/mL, 40 µg/mL, and 4 µg/mL was not toxic to cell culture and also did not inhibit the infection of VERO cells by SARS-CoV-2. However, it was evident that GO generated a novel virus entrapment phenomenon directly proportional to its concentration in the suspension. Similarly, this effect of GO was maintained in assays performed with the Zika virus. A new application for GO nanoparticles is proposed as part of a system to trap viruses in surgical mask filters, air conditioning equipment filters, and air purifier filters, complemented with the use of viricidal agents that can destroy the trapped viruses, an application of broad interest for human beings.

3.
J Sci Food Agric ; 103(5): 2425-2435, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36606570

RESUMEN

BACKGROUND: Microencapsulated yeasts are a novel alternative as a delivery matrix for microbiological starters. This technology aims to protect the active compounds from adverse environmental conditions and prolong their useful life and could also improve the conditions of the starters for cocoa fermentation. The present study established the effective dose to apply the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation and biotechnological strategy for promoting the biochemical dynamics and sensory expression of the cocoa variety CCN-51. For this, 0.5%, 1%, 2%, and 3% of microencapsulated P. kudriavzevii yeast insolated from the artisanal fermentation process of cocoa was added to the cocoa mass to be fermented and studied on a laboratory scale. RESULTS: The partial least squares regression of fermentation was related in four quartiles, comprising the hedonic judgments of the sensory evaluation with the biochemical traits of the cocoa liquor, finding a high correlation between the physicochemical variables total phenols, percentage of insufficiently fermented grains, and percentage of total acidity, with a level of bitterness and defects found in liquors with the addition of 0.5% of microencapsulated starter. The treatments with the addition of 2% and 3% of the inoculum showed a high correlation between the variables pH, total anthocyanins, cocoa, fruity and floral aromas, sweet taste, and general aroma perception. CONCLUSION: The higher presence of volatile compounds such as 2,3-butanediol associated with cocoa aroma and 1-phenyl-2-ethanol and acetophenone associated with aromatic descriptors of fruity and floral series allowed establishment in 2% of microencapsulated P. kudriavzevii yeast, comprising the effective dose for promoting the biochemical dynamics of laboratory-scale fermentation and the development of cocoa, as well as the fruity and floral aromas of cocoa CCN-51 liquor. The microencapsulation is suitable for cocoa starters. © 2023 Society of Chemical Industry.


Asunto(s)
Cacao , Cacao/química , Fermentación , Saccharomyces cerevisiae/metabolismo , Antocianinas/metabolismo , Genotipo
4.
Curr Microbiol ; 78(4): 1399-1408, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33646382

RESUMEN

The postharvest deterioration of cherry tomatoes due to diseases caused by fungi is one of the main causes of the loss of this product. The objective of this study was to determine the antagonistic capacity by evaluating the antifungal power of nine strains of lactic acid bacteria (LAB) in vitro against the phytopathogenic fungi Aspergillus niger, Fusarium sp., and Rhizopus stolonifer isolated from cherry tomatoes (Solanum lycopersicum var. cerasiforme) and to measure the biosurfactant production capacity, its antagonism in vivo, and the production of organic acids. The results showed that seven of the nine strains were able to inhibit at least one of the three fungi isolated in the in vitro assay. In eight of nine strains, biosurfactant production was identified, and the strains Weissella confusa and Lactiplantibacillus plantarum A6 showed the highest antifungal activity in vitro and in vivo against the fungi evaluated, with the identification of organic acid production in both strains. LAB demonstrated the ability to inhibit cherry tomato fungi, thus emerging as an alternative to the use of chemical preservatives in the production of this fruit and being projected as a preservation technology for this type of product through the use of strains or their metabolites.


Asunto(s)
Lactobacillales , Solanum lycopersicum , Weissella , Hongos , Rhizopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA