Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 141: 1-19, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31125807

RESUMEN

Salinity is one of the most severe environmental stresses limiting agricultural crop production worldwide. Photosynthesis is one of the main biochemical processes getting affected by such stress conditions. Here we investigated the stomatal and non-stomatal factors during photosynthesis in two Iranian melon genotypes "Ghobadlu" and "Suski-e-Sabz", as well as the "Galia" F1 cultivar, with an insight into better understanding the physiological mechanisms involved in the response of melon plants to increasing salinity. After plants were established in the greenhouse, they were supplied with nutrient solutions containing three salinity levels (0, 50, or 100 mM NaCl) for 15 and 30 days. With increasing salinity, almost all of the measured traits (e.g. stomatal conductance, transpiration rate, internal to ambient CO2 concentration ratio (Ci/Ca), Rubisco and nitrate reductase activity, carbon isotope discrimination (Δ13C), chlorophyll content, relative water content (RWC), etc.) significantly decreased after 15 and 30 days of treatments. In contrast, the overall mean of water use efficiency (intrinsic and instantaneous WUE), leaf abscisic acid (ABA) and flavonol contents, as well as osmotic potential (ΨS), all increased remarkably with increasing stress, across all genotypes. In addition, notable correlations were found between Δ13C and leaf gas exchange parameters as well as most of the measured traits (e.g. leaf area, biomass, RWC, ΨS, etc.), encouraging the possibility of using Δ13C as an important proxy for indirect selection of melon genotypes with higher photosynthetic capacity and higher salinity tolerance. The overall results suggest that both stomatal and non-stomatal limitations play an important role in reduced photosynthesis rate in melon genotypes studied under NaCl stress. This conclusion is supported by the concurrently increased resistance to CO2 diffusion, and lower Rubisco activity under NaCl treatments at the two sampling dates, and this was revealed by the appearance of lower Ci/Ca ratios and lower Δ13C in the leaves of salt-treated plants.


Asunto(s)
Isótopos de Carbono/química , Cucurbitaceae/fisiología , Fotosíntesis , Estomas de Plantas/fisiología , Salinidad , Clorofila/química , Cucurbitaceae/genética , Regulación hacia Abajo , Gases , Genes de Plantas , Genotipo , Irán , Nitrato-Reductasa/química , Nitrógeno/química , Ósmosis , Estrés Oxidativo , Hojas de la Planta/fisiología , Polifenoles/química , Ribulosa-Bifosfato Carboxilasa/química , Tolerancia a la Sal , Sales (Química)/química , Semillas/fisiología , Cloruro de Sodio/química , Agua
2.
Plant Physiol Biochem ; 119: 294-311, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28938176

RESUMEN

Melon (Cucumis melo L.) is one of the most important horticultural crops in Iran often cultivated in arid and semiarid regions of the country with salinity problems. The objective of this work was to better understand the mechanisms of physiological and biochemical responses to salinity stress of five Iranian melon landraces "Samsuri", "Kashan", "Khatouni", "Suski-e-Sabz", and "Ghobadlu" from different geographical origins, and "Galia" F1 cultivar. Plants were grown under greenhouse conditions and irrigated with half-strength Hoagland solution containing 0, 30, 60, or 90 mM NaCl for 60 days. Increase in the external salt concentration was accompanied by an obvious depression in leaf relative water content, membrane stability index, chlorophyll a and b and carotenoid contents, stomata and trichome density, leaf area, specific leaf area, biomass, leaf and stem K+ concentrations as well as leaf and stem K+/Na+ ratios in all landraces studied. In contrast, hydrogen peroxide, lipid peroxidation, proline and soluble carbohydrate contents, activity of antioxidant enzymes as well as leaf and stem Na+ and Cl- concentrations, all increased significantly with increasing stress over all plants. Moreover, carbon isotope discrimination (Δ13C), determined on leaf organic matter, was found to be associated with evaluated traits. For example, a highly positive correlation between Δ13C and both biomass production and salt tolerance index was notable when all saline treatments were averaged (r = 0.998 and 0.998, respectively). Also, scatter plot and clustering analysis showed that "Suski-e-Sabz" and "Ghobadlu" were placed close to "Galia" F1, a salt tolerant cultivar, indicating that their similar behavior under salinity. Overall, the present results indicated a significant genetic variability for most of the traits studied, suggesting that "Suski-e-Sabz" and "Ghobadlu" could be introduced as the superior landraces and the most promising tolerant parents in the future melon breeding programs due to their suitable performance, in terms of responses to salt stress as compared with other landraces. Also, Δ13C can be used as a powerful criterion in melon breeding programs aimed at selection of salt tolerant landraces.


Asunto(s)
Carotenoides/biosíntesis , Cucumis melo/crecimiento & desarrollo , Genotipo , Presión Osmótica , Estomas de Plantas/metabolismo , Tricomas/metabolismo , Cucumis melo/genética , Estomas de Plantas/genética , Salinidad , Tricomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA