Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835254

RESUMEN

Thermogenic adipocytes have potential utility for the development of approaches to treat type 2 diabetes and obesity-associated diseases. Although several reports have proved the positive effect of beige and brown adipocyte transplantation in obese mice, translation to human cell therapy needs improvement. Here, we describe the application of CRISPR activation (CRISPRa) technology for generating safe and efficient adipose-tissue-engineered constructs with enhanced mitochondrial uncoupling protein 1 (UCP1) expression. We designed the CRISPRa system for the activation of UCP1 gene expression. CRISPRa-UCP1 was delivered into mature adipocytes by a baculovirus vector. Modified adipocytes were transplanted in C57BL/6 mice, followed by analysis of grafts, inflammation and systemic glucose metabolism. Staining of grafts on day 8 after transplantation shows them to contain UCP1-positive adipocytes. Following transplantation, adipocytes remain in grafts and exhibit expression of PGC1α transcription factor and hormone sensitive lipase (HSL). Transplantation of CRISPRa-UCP1-modified adipocytes does not influence glucose metabolism or inflammation in recipient mice. We show the utility and safety of baculovirus vectors for CRISPRa-based thermogenic gene activation. Our findings suggest a means of improving existing cell therapy approaches using baculovirus vectors and CRISPRa for modification and transplantation of non-immunogenic adipocytes.


Asunto(s)
Tejido Adiposo Pardo , Proteína Desacopladora 1 , Animales , Humanos , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/trasplante , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Diabetes Mellitus Tipo 2/terapia , Glucosa/metabolismo , Ratones Endogámicos C57BL , Termogénesis/genética , Proteína Desacopladora 1/metabolismo
2.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497083

RESUMEN

BACKGROUND: Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS: Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS: At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS: The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Ratones , Masculino , Humanos , Animales , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/terapia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Ratones Endogámicos C57BL , Isquemia/metabolismo , Terapia Genética/métodos , Músculo Esquelético/metabolismo
3.
Front Nutr ; 8: 809732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35083264

RESUMEN

Background: Among vascular pathologies associated with obesity, peripheral artery disease (PAD) occupies the important position. In clinical practice, nutritional interventions are recommended for patients with PAD. In this work, we investigated how the different dietary backgrounds affect the regeneration rate of ischemic hindlimb in mice. Methods: Male C57BL/6J mice were housed on three types of diet: low-fat (LFD), high-fat (HFD), and grain-based diet (GBD) for 13 weeks. Metabolic parameters including FBG level, ITT, and GTT were evaluated. The blood flow was assessed by laser Doppler scanning on 7, 14, and 21 days after hindlimb ischemia. Necrotic area of m.tibialis, macrophage infiltration, and angiogenesis/arteriogenesis were evaluated by histology. Glucose uptake in recovered skeletal muscle was analyzed using [3H]-2-deoxyglucose, and GLUT1 and GLUT4 expression were assessed by Western blotting. Results: In our work, we developed three experimental groups with different metabolic parameters: LFD with normal glucose metabolism, GBD with mild hyperglycemia, and HFD with impaired glucose tolerance. GBD-fed mice had a tendency to increase necrosis of m. tibialis and significantly higher macrophage infiltration than LFD and HFD groups. Moreover, GBD-fed mice had a trend to decreased blood flow recovery and significantly impaired arteriogenesis. Recovered skeletal muscle of GBD-fed mice had lower glucose uptake and decreased level of GLUT4 expression. Conclusion: Thus, we conclude that dietary background and metabolic status determine the rate of post-ischemic regeneration including angiogenesis, skeletal muscle recovery and metabolic activity. The most effective regeneration is supported by LFD, while the lowest rate of regeneration occurs on GBD.

4.
Pharmaceutics ; 12(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353116

RESUMEN

Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest. Studies in HEK293T culture showed that all plasmids provided synthesis of HGF and VEGF165 proteins and stimulated capillary formation by human umbilical vein endothelial cells (HUVEC), indicating the biological potency of expressed factors. Tests in skeletal muscle explants showed a dramatic difference and most plasmids failed to express HGF and VEGF165 in a significant quantity. However, a bicistronic plasmid with two independent promoters (cytomegalovirus (CMV) for HGF and chicken b-actin (CAG) for VEGF165) provided expression of both grow factors in skeletal muscle at an equimolar ratio. Efficacy tests of bicistronic plasmid were performed in a mouse model of hind limb ischemia. Intramuscular administration of plasmid induced significant restoration of perfusion compared to an empty vector and saline. These findings were supported by increased CD31+ capillary density in animals that received pHGF/VEGF. Overall, our study reports a first-in-class candidate gene therapy drug to deliver two pivotal angiogenic growth factors (HGF and VEGF165) with properties that provide basis for future development of treatment for an unmet medical need-peripheral artery disease and associated limb ischemia.

5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339427

RESUMEN

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Infarto del Miocardio/terapia , Pericardio/metabolismo , Factor de Células Madre/metabolismo , Tejido Adiposo/citología , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Pericardio/fisiología , Ratas , Ratas Wistar , Regeneración , Factor de Células Madre/genética
6.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238604

RESUMEN

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.


Asunto(s)
Tejido Adiposo/citología , Factor de Crecimiento de Hepatocito/biosíntesis , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Células del Estroma/metabolismo , Células del Estroma/trasplante , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Movimiento Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Factor de Crecimiento de Hepatocito/genética , Humanos , Isquemia , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Proyección Neuronal/efectos de los fármacos
7.
PLoS One ; 13(5): e0197566, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29787588

RESUMEN

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Asunto(s)
Terapia Genética/métodos , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/uso terapéutico , Infarto del Miocardio/terapia , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Quimiocina CCL2/biosíntesis , Modelos Animales de Enfermedad , Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-8/biosíntesis , Masculino , Monocitos/metabolismo , Monocitos/patología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , FN-kappa B/metabolismo , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Plásmidos/administración & dosificación , Plásmidos/genética , Ratas , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Tissue Cell ; 49(1): 64-71, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28041835

RESUMEN

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Infarto del Miocardio/terapia , Trasplante de Células Madre , Animales , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácido Edético/farmacología , Uniones Comunicantes/efectos de los fármacos , Humanos , Infarto del Miocardio/patología , Miocardio/patología , Ratas , Medicina Regenerativa , Células Madre/efectos de los fármacos
9.
J Cell Biochem ; 117(1): 180-96, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26096299

RESUMEN

Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1ß, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential.


Asunto(s)
Tejido Adiposo/citología , Células Madre/citología , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Actinas/metabolismo , Tejido Adiposo/metabolismo , Adulto , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Células Madre/efectos de los fármacos , Adulto Joven
10.
Stem Cell Res Ther ; 6: 204, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26503601

RESUMEN

INTRODUCTION: Cell therapy using adipose-derived stromal cells (ADSC) is an intensively developing approach to promote angiogenesis and regeneration. Administration technique is crucial and among others minimal constructs - cell sheets (CS) have certain advantages. Delivery of CS allows transplantation of cells along with matrix proteins to facilitate engraftment. Cells' therapeutic potential can be also increased by expression of proangiogenic factors by viral transduction. In this work we report on therapeutic efficacy of CS from mouse ADSC transduced to express human vascular endothelial growth factor 165 a/a isoform (VEGF165), which showed potency to restore perfusion and protect tissue in a model of limb ischemia. METHODS: Mouse ADSC (mADSC) isolated from C57 male mice were expanded for CS formation (10(6)cells per CS). Constructs were transduced to express human VEGF165 by baculoviral (BV) system. CS were transplanted subcutaneously to mice with surgically induced limb ischemia and followed by laser Doppler perfusion measurements. At endpoint animals were sacrificed and skeletal muscle was evaluated for necrosis and vessel density; CS with underlying muscle was stained for apoptosis, proliferation, monocytes and blood vessels. RESULTS: Using BV system and sodium butyrate treatment we expressed human VEGF165 in mADSC (production of VEGF165 reached ≈ 25-27 ng/ml/10(5) cells) and optimized conditions to ensure cells' viability after transduction. Implantation of mock-transduced CS resulted in significant improvement of limb perfusion, increased capillary density and necrosis reduction at 2 weeks post-surgery compared to untreated animals. Additional improvement of blood flow and angiogenesis was observed after transplantation of VEGF165-expressing CS indicating enhanced therapeutic potential of genetically modified constructs. Moreover, we found delivery of mADSC as CS to be superior to equivalent dose of suspended cells in terms of perfusion and angiogenesis. Histology analysis of extracted CS detected limited proliferation and approximately 10 % prevalence of apoptosis in transplanted mADSC. Significant vascularization of CS and infiltration by monocytes were found in both - BV-transduced and control CS indicating graft and host interaction after transplantation. CONCLUSIONS: Delivery of ADSC by subcutaneous transplantation of CS is effective for stimulation of angiogenesis and tissue protection in limb ischemia with a potential for efficacy improvement by BV transduction to express VEGF165.


Asunto(s)
Isquemia/terapia , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Trasplante de Células Madre , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Apoptosis , Baculoviridae/genética , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Miembro Posterior/irrigación sanguínea , Masculino , Ratones Endogámicos C57BL , Microvasos/fisiología , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Miositis/prevención & control , Necrosis/prevención & control , Flujo Sanguíneo Regional , Grasa Subcutánea/patología , Transducción Genética , Factor A de Crecimiento Endotelial Vascular/genética
11.
J Transl Med ; 11: 138, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23742074

RESUMEN

BACKGROUND: Modified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue. MATERIALS AND METHODS: Human ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied. RESULTS: We obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation. CONCLUSIONS: Transplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.


Asunto(s)
Tejido Adiposo/citología , Trasplante de Células/métodos , Isquemia/terapia , Músculo Esquelético/patología , Neovascularización Fisiológica , Células del Estroma/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adulto , Animales , Adhesión Celular , Proliferación Celular , Colágeno/química , Medios de Cultivo Condicionados/farmacología , Dependovirus/metabolismo , Combinación de Medicamentos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Laminina/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Proteoglicanos/química , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA