Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988193

RESUMEN

Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone (Haliotis rufescens) using a multi-generational split-brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO2 (1180 µatm; simulating OA) or low pCO2 (450 µatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO2 treatments for 11 months and measuring growth and reproductive potential. Early-life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re-exposed to OA as adults. Adult but not early-life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO2 treatments for the first 3 months of life in a fully factorial, split-brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life-history windows can mitigate these effects.


Asunto(s)
Gastrópodos , Agua de Mar , Animales , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Dióxido de Carbono/efectos adversos , Reproducción , Gastrópodos/fisiología
2.
Proc Natl Acad Sci U S A ; 117(42): 26513-26519, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33020305

RESUMEN

Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.


Asunto(s)
Acuicultura/métodos , Gastrópodos/crecimiento & desarrollo , Gastrópodos/metabolismo , Animales , Fenómenos Biológicos , Ecosistema , Metabolismo Energético , Explotaciones Pesqueras , Gastrópodos/fisiología , Concentración de Iones de Hidrógeno , Larva , Moluscos/metabolismo , Alimentos Marinos , Agua de Mar/química , Mariscos
3.
Genome Biol Evol ; 11(2): 431-438, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657886

RESUMEN

Abalone are one of the few marine taxa where aquaculture production dominates the global market as a result of increasing demand and declining natural stocks from overexploitation and disease. To better understand abalone biology, aid in conservation efforts for endangered abalone species, and gain insight into sustainable aquaculture, we created a draft genome of the red abalone (Haliotis rufescens). The approach to this genome draft included initial assembly using raw Illumina and PacBio sequencing data with MaSuRCA, before scaffolding using sequencing data generated from Chicago library preparations with HiRise2. This assembly approach resulted in 8,371 scaffolds and total length of 1.498 Gb; the N50 was 1.895 Mb, and the longest scaffold was 13.2 Mb. Gene models were predicted, using MAKER2, from RNA-Seq data and all related expressed sequence tags and proteins from NCBI; this resulted in 57,785 genes with an average length of 8,255 bp. In addition, single nucleotide polymorphisms were called on Illumina short-sequencing reads from five other eastern Pacific abalone species: the green (H. fulgens), pink (H. corrugata), pinto (H. kamtschatkana), black (H. cracherodii), and white (H. sorenseni) abalone. Phylogenetic relationships largely follow patterns detected by previous studies based on 1,784,991 high-quality single nucleotide polymorphisms. Among the six abalone species examined, the endangered white abalone appears to harbor the lowest levels of heterozygosity. This draft genome assembly and the sequencing data provide a foundation for genome-enabled aquaculture improvement for red abalone, and for genome-guided conservation efforts for the other five species and, in particular, for the endangered white and black abalone.


Asunto(s)
Gastrópodos/genética , Genoma , Animales , Anotación de Secuencia Molecular , América del Norte , Océano Pacífico , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...