Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metallomics ; 15(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37653446

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major healthcare concern with associated healthcare costs reaching over ${\$}$1 billion in a single year in the USA. Antibiotic resistance in S. aureus is now observed against last line of defense antibiotics, such as vancomycin, linezolid, and daptomycin. Unfortunately, high throughput drug discovery approaches to identify new antibiotics effective against MRSA have not resulted in much tangible success over the last decades. Previously, we demonstrated the feasibility of an alternative drug discovery approach, the identification of metallo-antibiotics, compounds that gain antibacterial activity only after binding to a transition metal ion and as such are unlikely to be detected in standard drug screens. We now report that avobenzone, the primary active ingredient of most sunscreens, can be activated by zinc to become a potent antibacterial compound against MRSA. Zinc-activated avobenzone (AVB-Zn) potently inhibited a series of clinical MRSA isolates [minimal inhibitory concentration (MIC): 0.62-2.5 µM], without pre-existing resistance and activity without zinc (MIC: >10 µM). AVB-Zn was also active against clinical MRSA isolates that were resistant against the commonly used zinc-salt antibiotic bacitracin. We found AVB-Zn exerted no cytotoxicity on human cell lines and primary cells. Last, we demonstrate AVB-Zn can be deployed therapeutically as lotion preparations, which showed efficacy in a mouse wound model of MRSA infection. AVB-Zn thus demonstrates Zn-activated metallo-antibiotics are a promising avenue for future drug discovery.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Animales , Ratones , Antibacterianos/farmacología , Protectores Solares/farmacología , Zinc/farmacología , Staphylococcus aureus , Reposicionamiento de Medicamentos , Modelos Animales de Enfermedad
2.
Infect Immun ; 90(11): e0023722, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36165627

RESUMEN

Cystic fibrosis (CF) disease is characterized by lifelong infections with pathogens such as Staphylococcus aureus, leading to eventual respiratory failure. Small colony variants (SCVs) of S. aureus have been linked to worse clinical outcomes for people with CF. Current studies of SCV pathology in vivo are limited, and it remains unclear whether SCVs directly impact patient outcomes or are a result of late-stage CF disease. To investigate this, we generated a stable menadione-auxotrophic SCV strain by serially passaging a CF isolate of S. aureus with tobramycin, an aminoglycoside antibiotic commonly administered for coinfecting Pseudomonas aeruginosa. This SCV was tobramycin resistant and showed increased tolerance to the anti-staphylococcal combination therapy sulfamethoxazole-trimethoprim. To better understand the dynamics of SCV infections in vivo, we infected CF rats with this strain compared with its normal colony variant (NCV). Analysis of bacterial burden at 3 days postinfection indicated that NCVs and SCVs persisted equally well in the lungs, but SCV infections ultimately led to increased weight loss and neutrophilic inflammation. Additionally, cellular and histopathological analyses showed that in CF rats, SCV infections yielded a lower macrophage response. Overall, these findings indicate that SCV infections may directly contribute to lung disease progression in people with CF.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Ratas , Animales , Staphylococcus aureus/fisiología , Fibrosis Quística/microbiología , Tobramicina/farmacología , Tobramicina/uso terapéutico , Infecciones Estafilocócicas/microbiología , Antibacterianos/efectos adversos , Pulmón/microbiología , Inflamación
3.
Environ Sci Technol ; 55(5): 2908-2918, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33594894

RESUMEN

Swimming pools are commonly treated with chlorine, which reacts with the natural organic matter and organic matter introduced by swimmers and form disinfection byproducts (DBPs) that are associated with respiratory-related issues, including asthma, in avid swimmers. We investigated a complementary disinfectant to chlorine, copper-silver ionization (CSI), with the aim of lowering the amount of chlorine used in pools and limiting health risks from DBPs. We sampled an indoor and outdoor pool treated with CSI-chlorine during the swimming season in 2017-2018 and measured 71 DBPs, speciated total organic halogen, in vitro mammalian cell cytotoxicity, and N-acetyl-l-cysteine (NAC) thiol reactivity as a cytotoxicity predictor. Controlled, simulated swimming pools were also investigated. Emerging DBP concentrations decreased by as much as 80% and cytotoxicity decreased as much as 70% in the indoor pool when a lower chlorine residual (1.0 mg/L) and CSI was used. Some DBPs were quantified for the first time in pools, including chloroacetaldehyde (up to 10.6 µg/L), the most cytotoxic haloacetaldehyde studied to date and a major driver of the measured cytotoxicity in this study. Three highly toxic iodinated haloacetic acids (iodoacetic acid, bromoiodoacetic acid, and chloroiodoacetic acid) were also quantified in pools for the first time. We also found that the NAC thiol reactivity was significantly correlated to cytotoxicity, which could be useful for predicting the cytotoxicity of swimming pool waters in future studies.


Asunto(s)
Desinfectantes , Piscinas , Contaminantes Químicos del Agua , Animales , Cloro , Cobre/toxicidad , Desinfectantes/toxicidad , Desinfección , Plata , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Pathog Dis ; 79(1)2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33351093

RESUMEN

Neutrophils generate hypochlorous acid (HOCl) and related reactive chlorine species as part of their defence against invading microorganisms. In isolation, bacteria respond to reactive chlorine species by upregulating responses that provide defence against oxidative challenge. Key questions are whether these responses are induced when bacteria are phagocytosed by neutrophils, and whether this provides them with a survival advantage. We investigated RclR, a transcriptional activator of the rclABC operon in Escherichia coli that has been shown to be specifically activated by reactive chlorine species. We first measured induction by individual reactive chlorine species, and showed that HOCl itself activates the response, as do chloramines (products of HOCl reacting with amines) provided they are cell permeable. Strong RclR activation was seen in E. coli following phagocytosis by neutrophils, beginning within 5 min and persisting for 40 min. RclR activation was suppressed by inhibitors of NOX2 and myeloperoxidase, providing strong evidence that it was due to HOCl production in the phagosome. RclR activation demonstrates that HOCl, or a derived chloramine, enters phagocytosed bacteria in sufficient amount to induce this response. Although RclR was induced in wild-type bacteria following phagocytosis, we detected no greater sensitivity to neutrophil killing of mutants lacking genes in the rclABC operon.


Asunto(s)
Cloro/metabolismo , Escherichia coli/metabolismo , Ácido Hipocloroso/metabolismo , NADPH Oxidasa 2/metabolismo , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Factores de Transcripción/metabolismo , Células Cultivadas , Cloraminas/farmacología , Cloro/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Humanos , Ácido Hipocloroso/farmacología , Viabilidad Microbiana , Neutrófilos/microbiología , Oxidación-Reducción , Fagocitosis , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...