Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 284, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573322

RESUMEN

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.


Asunto(s)
Bioensayo , Oligonucleótidos , Control de Calidad , Temperatura
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542416

RESUMEN

Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool.


Asunto(s)
Candida , Candidiasis , Humanos , Estudios de Seguimiento , Candidiasis/diagnóstico , Candidiasis/tratamiento farmacológico , Candida glabrata , Antifúngicos/uso terapéutico
3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38256916

RESUMEN

The diminishing portfolio of mankind's available antibiotics urges science to develop novel potent drugs. Here, we present a peptide fitting the typical blueprint of amphipathic and membrane-active antimicrobial peptides, denominated C14R. This 2 kDa peptide consists of 16 amino acid residues, with seven being either hydrophobic, aromatic, or non-polar, and nine being polar or positively charged, strictly separated on opposite sides of the predicted α-helix. The affinity of the peptide C14R to P. aeruginosa membranes and its intrinsic tendency to productively insert into membranes of such composition were analyzed by dynamic simulations. Its biological impact on the viability of two different P. aeruginosa reference strains was demonstrated by determining the minimal inhibitory concentrations (MICs), which were found to be in the range of 10-15 µg/mL. C14R's pore-forming capability was verified in a permeabilization assay based on the peptide-triggered uptake of fluorescent dyes into the bacterial cells. Finally, the peptide was used in radial diffusion assays, which are commonly used for susceptibility testing of antimicrobial peptides in clinical microbiology. In comparison to reference strains, six clinical P. aeruginosa isolates were clearly affected, thereby paving the way for further in-depth analyses of C14R as a promising new AMP drug in the future.

4.
Microorganisms ; 11(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764110

RESUMEN

Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...