Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 6(5): e0042521, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34546072

RESUMEN

Dolosigranulum pigrum is positively associated with indicators of health in multiple epidemiological studies of human nasal microbiota. Knowledge of the basic biology of D. pigrum is a prerequisite for evaluating its potential for future therapeutic use; however, such data are very limited. To gain insight into D. pigrum's chromosomal structure, pangenome, and genomic stability, we compared the genomes of 28 D. pigrum strains that were collected across 20 years. Phylogenomic analysis showed closely related strains circulating over this period and closure of 19 genomes revealed highly conserved chromosomal synteny. Gene clusters involved in the mobilome and in defense against mobile genetic elements (MGEs) were enriched in the accessory genome versus the core genome. A systematic analysis for MGEs identified the first candidate D. pigrum prophage and insertion sequence. A systematic analysis for genetic elements that limit the spread of MGEs, including restriction modification (RM), CRISPR-Cas, and deity-named defense systems, revealed strain-level diversity in host defense systems that localized to specific genomic sites, including one RM system hot spot. Analysis of CRISPR spacers pointed to a wealth of MGEs against which D. pigrum defends itself. These results reveal a role for horizontal gene transfer and mobile genetic elements in strain diversification while highlighting that in D. pigrum this occurs within the context of a highly stable chromosomal organization protected by a variety of defense mechanisms. IMPORTANCE Dolosigranulum pigrum is a candidate beneficial bacterium with potential for future therapeutic use. This is based on its positive associations with characteristics of health in multiple studies of human nasal microbiota across the span of human life. For example, high levels of D. pigrum nasal colonization in adults predicts the absence of Staphylococcus aureus nasal colonization. Also, D. pigrum nasal colonization in young children is associated with healthy control groups in studies of middle ear infections. Our analysis of 28 genomes revealed a remarkable stability of D. pigrum strains colonizing people in the United States across a 20-year span. We subsequently identified factors that can influence this stability, including genomic stability, phage predators, the role of MGEs in strain-level variation, and defenses against MGEs. Finally, these D. pigrum strains also lacked predicted virulence factors. Overall, these findings add additional support to the potential for D. pigrum as a therapeutic bacterium.

2.
Front Genet ; 10: 555, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275355

RESUMEN

Acute bacterial otitis media is usually caused by otopathogens ascending to the middle ear from the nasopharynx (NP). However, it is unknown if the nasopharyngeal microbiota of children with acute otitis media (AOM) can serve as an age-dependent or independent proxy for the microbial communities of the middle ear fluid (MEF) as there is a lack of 16S rRNA amplicon sequencing studies simultaneously analyzing the microbial communities of the two sites. Within this study, we performed 16S rRNA next generation sequencing on a total of 286 nasopharyngeal swabs (NPSs) collected between 2004 and 2013 within a Swiss national AOM surveillance program from children (0-6 years) with AOM. In addition, 42/286 children had spontaneous tympanic membrane perforation and, therefore, those MEF could also be analyzed. We found that alpha [Richness, Shannon diversity index (SDI) and Evenness] and beta diversity measurements of the nasopharyngeal bacterial microbiota showed a clear dependency of the increasing age of the children. In more detail, bacterial richness and personalized profiles (measured by beta dispersion) were higher and more frequent in older children, respectively. Dissimilarity values based on the binary distance matrix of the microbiota patterns of the NP and the MEF also correlated with increasing age. In general, positive (PPV) and negative predictive values (NPV) of the most abundant operational taxonomic units (OTUs) in the NP were moderately and well predictive for their presence in the MEF, respectively. This data is crucial to better understand polymicrobial infections and therefore AOM pathogenesis.

3.
Curr Opin Microbiol ; 41: 8-14, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29156371

RESUMEN

The human nasal passages host major human pathogens. Recent research suggests that the microbial communities inhabiting the epithelial surfaces of the nasal passages are a key factor in maintaining a healthy microenvironment by affecting both resistance to pathogens and immunological responses. The nasal bacterial microbiota shows distinct changes over the span of human life and disruption by environmental factors might be associated with both short- and long-term health consequences, such as susceptibility to viral and bacterial infections and disturbances of the immunological balance. Because infants and older adults experience a high burden of morbidity and mortality from respiratory tract infections, we review recent data on the bacterial nasal microbiota composition in health and acute respiratory infection in these age groups.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Cavidad Nasal/microbiología , Infecciones del Sistema Respiratorio/microbiología , Adolescente , Factores de Edad , Anciano , Bacterias/clasificación , Bacterias/genética , Infecciones Bacterianas/microbiología , Preescolar , ADN Bacteriano , Susceptibilidad a Enfermedades/etiología , Susceptibilidad a Enfermedades/inmunología , Femenino , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , ARN Ribosómico 16S
5.
mBio ; 7(1): e01725-15, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26733066

RESUMEN

UNLABELLED: Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE: Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.


Asunto(s)
Antibiosis , Corynebacterium/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Cavidad Nasal/microbiología , Piel/microbiología , Streptococcus pneumoniae/fisiología , Triglicéridos/metabolismo , Antibacterianos/farmacología , Portador Sano/microbiología , Niño , Preescolar , Corynebacterium/química , Ácidos Grasos no Esterificados/farmacología , Humanos , Hidrólisis , Lactante , Microbiota , Infecciones Neumocócicas/prevención & control , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Trioleína/metabolismo
6.
Genome Announc ; 3(1)2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25657285

RESUMEN

Mucinivorans hirudinis M3(T) was isolated from the digestive tract of the medicinal leech, Hirudo verbana, and is the type species of a new genus within the Rikenellaceae. Here, we report the complete annotated genome sequence of this bacterium.

7.
Int J Syst Evol Microbiol ; 65(Pt 3): 990-995, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25563920

RESUMEN

Three anaerobic bacterial strains were isolated from the digestive tract of the medicinal leech Hirudo verbana, using mucin as the primary carbon and energy source. These strains, designated M3(T), M4 and M6, were Gram-stain-negative, non-spore-forming and non-motile. Cells were elongated bacilli approximately 2.4 µm long and 0.6 µm wide. Growth only occurred anaerobically under mesophilic and neutral pH conditions. All three strains could utilize multiple simple and complex sugars as carbon sources, with glucose fermented to acid by-products. The DNA G+C contents of strains M3(T), M4 and M6 were 44.9, 44.8 and 44.8 mol%, respectively. The major cellular fatty acid of strain M3(T) was iso-C15 : 0. Phylogenetic analysis of full-length 16S rRNA gene sequences revealed that the three strains shared >99 % similarity with each other and represent a new lineage within the family Rikenellaceae of the order Bacteroidales, phylum Bacteroidetes. The most closely related bacteria to strain M3(T) based on 16S rRNA gene sequences were Rikenella microfusus DSM 15922(T) (87.3 % similarity) and Alistipes finegoldii AHN 2437(T) (87.4 %). On the basis of phenotypic, genotypic and physiological evidence, strains M3(T), M4 and M6 are proposed as representing a novel species of a new genus within the family Rikenellaceae, for which the name Mucinivorans hirudinis gen. nov., sp. nov. is proposed. The type strain of Mucinivorans hirudinis is M3(T) ( = ATCC BAA-2553(T) = DSM 27344(T)).


Asunto(s)
Bacteroidetes/clasificación , Tracto Gastrointestinal/microbiología , Hirudo medicinalis/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Front Microbiol ; 5: 151, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860552

RESUMEN

There are trillions of microbes found throughout the human body and they exceed the number of eukaryotic cells by 10-fold. Metagenomic studies have revealed that the majority of these microbes are found within the gut, playing an important role in the host's digestion and nutrition. The complexity of the animal digestive tract, unculturable microbes, and the lack of genetic tools for most culturable microbes make it challenging to explore the nature of these microbial interactions within this niche. The medicinal leech, Hirudo verbana, has been shown to be a useful tool in overcoming these challenges, due to the simplicity of the microbiome and the availability of genetic tools for one of the two dominant gut symbionts, Aeromonas veronii. In this study, we utilize 16S rRNA gene pyrosequencing to further explore the microbial composition of the leech digestive tract, confirming the dominance of two taxa, the Rikenella-like bacterium and A. veronii. The deep sequencing approach revealed the presence of additional members of the microbial community that suggests the presence of a moderately complex microbial community with a richness of 36 taxa. The presence of a Proteus strain as a newly identified resident in the leech crop was confirmed using fluorescence in situ hybridization (FISH). The metagenome of this community was also pyrosequenced and the contigs were binned into the following taxonomic groups: Rikenella-like (3.1 MB), Aeromonas (4.5 MB), Proteus (2.9 MB), Clostridium (1.8 MB), Eryspelothrix (0.96 MB), Desulfovibrio (0.14 MB), and Fusobacterium (0.27 MB). Functional analyses on the leech gut symbionts were explored using the metagenomic data and MG-RAST. A comparison of the COG and KEGG categories of the leech gut metagenome to that of other animal digestive-tract microbiomes revealed that the leech digestive tract had a similar metabolic potential to the human digestive tract, supporting the usefulness of this system as a model for studying digestive-tract microbiomes. This study lays the foundation for more detailed metatranscriptomic studies and the investigation of symbiont population dynamics.

9.
Genome Announc ; 1(5)2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24092791

RESUMEN

Aeromonas veronii strain Hm21 was isolated from the digestive tract of the medicinal leech Hirudo verbana and has been used to identify genes that are important for host colonization. This species is also a symbiont in the gut of zebrafish and is a pathogen of mammals and fish. We present here a 4.68-Mbp draft genome sequence for Hm21.

10.
Biol Bull ; 223(1): 155-66, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22983040

RESUMEN

Host-associated microbial communities are widespread in nature and vital to the health and fitness of the host. Deciphering the physiology of the microbiome in vivo is critical to understanding the molecular basis of the symbiosis. Recently, the development and application of high-throughput sequencing techniques, particularly RNA-seq, for studying microbial communities has enabled researchers to address not only which microbes are present in a given community but also how the community functions. For microbes that can also be cultivated in the laboratory, RNA-seq provides the opportunity to identify genes that are differentially expressed during symbiosis by comparing in vitro to in vivo transcriptomes. In the current study, we used RNA-seq to identify genes expressed by the digestive-tract microbiome of the medicinal leech, Hirudo verbana, and by one of the two dominant symbionts, Aeromonas veronii, in a rich medium. We used a comparative approach to identify genes differentially expressed during symbiosis and gain insight into the symbiont's physiology in vivo. Notable findings include evidence for the symbionts experiencing environmental stress, performing arginine catabolism, and expressing noncoding RNAs that are implicated in stationary phase survival, a state in which A. veronii persists for months within the host.


Asunto(s)
Aeromonas/fisiología , Sanguijuelas/microbiología , Estrés Fisiológico , Simbiosis , Transcriptoma , Aeromonas/genética , Aeromonas/crecimiento & desarrollo , Animales , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Sanguijuelas/fisiología
11.
mBio ; 2(2): e00012-11, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21467263

RESUMEN

UNLABELLED: The vast majority of bacterial species remain uncultured, and this severely limits the investigation of their physiology, metabolic capabilities, and role in the environment. High-throughput sequencing of RNA transcripts (RNA-seq) allows the investigation of the diverse physiologies from uncultured microorganisms in their natural habitat. Here, we report the use of RNA-seq for characterizing the metatranscriptome of the simple gut microbiome from the medicinal leech Hirudo verbana and for utilizing this information to design a medium for cultivating members of the microbiome. Expression data suggested that a Rikenella-like bacterium, the most abundant but uncultured symbiont, forages on sulfated- and sialated-mucin glycans that are fermented, leading to the secretion of acetate. Histological stains were consistent with the presence of sulfated and sialated mucins along the crop epithelium. The second dominant symbiont, Aeromonas veronii, grows in two different microenvironments and is predicted to utilize either acetate or carbohydrates. Based on the metatranscriptome, a medium containing mucin was designed, which enabled the cultivation of the Rikenella-like bacterium. Metatranscriptomes shed light on microbial metabolism in situ and provide critical clues for directing the culturing of uncultured microorganisms. By choosing a condition under which the desired organism is rapidly proliferating and focusing on highly expressed genes encoding hydrolytic enzymes, binding proteins, and transporters, one can identify an organism's nutritional preferences and design a culture medium. IMPORTANCE: The number of prokaryotes on the planet has been estimated to exceed 10(30) cells, and the overwhelming majority of them have evaded cultivation, making it difficult to investigate their ecological, medical, and industrial relevance. The application of transcriptomics based on high-throughput sequencing of RNA transcripts (RNA-seq) to microorganisms in their natural environment can provide investigators with insight into their physiologies under optimal growth conditions. We utilized RNA-seq to learn more about the uncultured and cultured symbionts that comprise the relatively simple digestive-tract microbiome of the medicinal leech. The expression data revealed highly expressed hydrolytic enzymes and transporters that provided critical clues for the design of a culture medium enabling the isolation of the previously uncultured Rikenella-like symbiont. This directed culturing method will greatly aid efforts aimed at understanding uncultured microorganisms, including beneficial symbionts, pathogens, and ecologically relevant microorganisms, by facilitating genome sequencing, physiological characterization, and genetic manipulation of the previously uncultured microbes.


Asunto(s)
Aeromonas/genética , Técnicas Bacteriológicas/métodos , Bacteroidetes/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Sanguijuelas/microbiología , Metagenómica/métodos , Acetatos/metabolismo , Aeromonas/crecimiento & desarrollo , Aeromonas/metabolismo , Animales , Fenómenos Fisiológicos Bacterianos , Bacteroidetes/metabolismo , Metabolismo de los Hidratos de Carbono , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Mucinas/metabolismo , Filogenia , Polisacáridos/metabolismo , Análisis de Secuencia de ADN , Simbiosis
12.
Environ Microbiol ; 11(10): 2758-70, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19678832

RESUMEN

Most animals harbour symbiotic microorganisms inside their body, where intimate interactions occur between the partners. The medicinal leech, Hirudo verbana, possesses 17 pairs of excretory bladders that harbour a large number of intracellular and extracellular symbiotic bacteria. In this study, we characterized the bladder symbionts using molecular phylogenetic analyses, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Restriction fragment length polymorphism (RFLP) and sequence analyses of 16S rRNA gene clone libraries suggested that six bacterial species co-colonize the leech bladders. Phylogenetic analyses revealed that these species belong to the alpha-Proteobacteria (Ochrobactrum symbiont), beta-Proteobacteria (Beta-1 and Beta-2 symbionts), delta-Proteobacteria (Bdellovibrio symbiont) and Bacteroidetes (Niabella and Sphingobacterium symbionts). Species-specific PCR detection and FISH confirmed the localization of the symbiotic bacteria in the bladders. The Ochrobactrum, Beta-1, Bdellovibrio and Sphingobacterium symbionts were consistently detected in 13 leeches from two populations, while infection rate of the other symbionts ranged between 20% and 100% in the two leech populations. Transmission electron microscopy observations of the bladders revealed epithelial cells harbouring a number of intracellular bacilli and an additional type of extracellular, rod-shaped bacteria in the luminal region. Fluorescence in situ hybridization with group-specific oligonucleotide probes revealed the spatial organization of the bacterial species in the bladder: the Ochrobactrum symbiont was located intracellularly inside epithelial cells; the Bacteroidetes were localized close to the epithelium in the lumen of the bladder; and the Bacteroidetes layer was covered with dense beta-proteobacterial cells. These results clearly demonstrate that a simple but organized microbial community exists in the bladder of the medicinal leech.


Asunto(s)
Bacteroidetes/aislamiento & purificación , Sanguijuelas/microbiología , Proteobacteria/aislamiento & purificación , Animales , Bacteroidetes/genética , Bacteroidetes/ultraestructura , Biodiversidad , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Hibridación Fluorescente in Situ , Sanguijuelas/ultraestructura , Microscopía Electrónica de Transmisión , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Proteobacteria/genética , Proteobacteria/ultraestructura , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...