Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Insect Biochem Mol Biol ; 41(3): 150-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21112395

RESUMEN

The olive fruit fly Bactrocera oleae is the most destructive and intractable pest of olives. The management of B. oleae has been based on the use of organophosphate (OP) insecticides, a practice that induced resistance. OP-resistance in the olive fly was previously shown to be associated with two mutations in the acetylcholinesterase (AChE) enzyme that, apparently, hinder the entrance of the OP into the active site. The search for additional mutations in the ace gene that encodes AChE revealed a short deletion of three glutamines (Δ3Q) from a stretch of five glutamines, in the C-terminal peptide that is normally cleaved and substituted by a GPI anchor. We verified that AChEs from B. oleae and other Dipterans are actually GPI-anchored, although this is not predicted by the "big-PI" algorithm. The Δ3Q mutation shortens the unusually long hydrophilic spacer that follows the predicted GPI attachment site and may thus improve the efficiency of GPI anchor addition. We expressed the wild type B. oleae AChE, the natural mutant Δ3Q and a constructed mutant lacking all 5 consecutive glutamines (Δ5Q) in COS cells and compared their kinetic properties. All constructs presented identical K(m) and k(cat) values, in agreement with the fact that the mutations did not affect the catalytic domain of the enzyme. In contrast, the mutants produced higher AChE activity, suggesting that a higher proportion of the precursor protein becomes GPI-anchored. An increase in the number of GPI-anchored molecules in the synaptic cleft may reduce the sensitivity to insecticides.


Asunto(s)
Acetilcolinesterasa/genética , Resistencia a los Insecticidas , Tephritidae/genética , Algoritmos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Análisis Mutacional de ADN , Glucosa-6-Fosfato Isomerasa/metabolismo , Insecticidas/metabolismo , Datos de Secuencia Molecular , Mutación , Compuestos Organofosforados/metabolismo , Eliminación de Secuencia , Tephritidae/enzimología
2.
J Biol Chem ; 285(35): 27265-27278, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20566626

RESUMEN

Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChE(T) and BChE(T) with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (Q(N-GPI)). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or Q(N-GPI) always consist of AChE(T) and BChE(T) homodimers. The dimer formation of AChE(T) and BChE(T) depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal "t-peptides" in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChE(T) or BChE(T) homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission.


Asunto(s)
Acetilcolinesterasa/biosíntesis , Encéfalo/embriología , Butirilcolinesterasa/biosíntesis , Pollos , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de la Membrana/biosíntesis , Complejos Multienzimáticos/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Multimerización de Proteína/fisiología , Regulación hacia Arriba/fisiología , Acetilcolinesterasa/genética , Animales , Encéfalo/citología , Encéfalo/enzimología , Butirilcolinesterasa/genética , Células Cultivadas , Embrión de Pollo , Proteínas de la Membrana/genética , Complejos Multienzimáticos/genética , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Péptidos/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transmisión Sináptica/fisiología
3.
FEBS J ; 276(16): 4473-82, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19645739

RESUMEN

The mouse CutA protein exists as long and short components of 20 and 15 kDa, produced by the use of different in-frame ATGs initiation codons, and by proteolytic cleavage. We recently showed that, surprisingly, the longer, uncleaved component resides mostly in the secretory pathway and is secreted, whereas the shorter component resides mostly in the cytoplasm. To confirm these subcellular localizations, we constructed fusion proteins in which the catalytic domain of rat acetylcholinesterase was placed downstream of the CutA variants. The acquisition of an active conformation and N-glycosylation of the fusion proteins proved their transfer into the secretory pathway. We show that the CutA-AChE fusion proteins produced and secreted active, N-glycosylated molecules, while an AChE mutant lacking its secretory signal peptide did not produce any significant activity. Thus, an N-terminal CutA domain actually drives AChE into the endoplasmic reticulum and allows its secretion. This was observed with full length CutA, starting at Met1, and at a much lower level with the shorter mutants starting at Met24 and Met44, although the latter is not predicted to possess any signal peptide. These experiments illustrate the value of using AChE as a reporter and reveals an unusual protein trafficking and secretory process.


Asunto(s)
Acetilcolinesterasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Vías Secretoras , Acetilcolinesterasa/genética , Animales , Dominio Catalítico , Línea Celular , Glicosilación , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Ratones , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas/genética , Proteínas/fisiología , Ratas , Proteínas Recombinantes de Fusión/metabolismo
4.
J Biol Chem ; 284(8): 5195-207, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19049969

RESUMEN

The mammalian protein CutA was first discovered in a search for the membrane anchor of mammalian brain acetylcholinesterase (AChE). It was co-purified with AChE, but it is distinct from the real transmembrane anchor protein, PRiMA. CutA is a ubiquitous trimeric protein, homologous to the bacterial CutA1 protein that belongs to an operon involved in resistance to divalent ions ("copper tolerance A"). The function of this protein in plants and animals is unknown, and several hypotheses concerning its subcellular localization have been proposed. We analyzed the expression and the subcellular localization of mouse CutA variants, starting at three in-frame ATG codons, in transfected COS cells. We show that CutA produces 20-kDa (H) and 15-kDa (L) components. The H component is transferred into the secretory pathway and secreted, without cleavage of a signal peptide, whereas the L component is mostly cytosolic. We show that expression of the longer CutA variant reduces the level of AChE, that this effect depends on the AChE C-terminal peptides, and probably results from misfolding. Surprisingly, CutA increased the secretion of a mutant possessing a KDEL motif at its C terminus; it also increased the formation of AChE homotetramers. We found no evidence for a direct interaction between CutA and AChE. The longer CutA variant seems to affect the processing and trafficking of secretory proteins, whereas the shorter one may have a distinct function in the cytoplasm.


Asunto(s)
Acetilcolinesterasa/metabolismo , Secuencias de Aminoácidos , Proteínas de la Membrana/metabolismo , Acetilcolinesterasa/genética , Secuencias de Aminoácidos/fisiología , Animales , Células COS , Chlorocebus aethiops , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Pliegue de Proteína , Estructura Cuaternaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Ratas
5.
FEBS J ; 276(1): 94-108, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19019080

RESUMEN

Butyrylcholinesterase (BChE) and the T splice variant of acetylcholinesterase that is predominant in mammalian brain and muscles (AChE(T)) possess a characteristic C-terminal tail (t) peptide. This t peptide allows their assembly into tetramers associated with the anchoring proteins ColQ and PRiMA. Although the t peptides of all vertebrate cholinesterases are remarkably similar and, in particular, contain seven strictly conserved aromatic residues, these enzymes differ in some of their oligomerization properties. To explore these differences, we studied human AChE (Aa) and BChE (Bb), and chimeras in which the t peptides (a and b) were exchanged (Ab and Ba). We found that secretion was increased by deletion of the t peptides, and that it was more efficient with a than with b. The patterns of oligomers were similar for Aa and Ab, as well as for Ba and Bb, indicating a predominant influence of the catalytic domains. However, addition of a cysteine within the aromatic-rich segment of the t peptides modified the oligomeric patterns: with a cysteine at position 19, the proportion of tetramers was markedly increased for Aa(S19C) and Ba(S19C), and to a lesser extent for Bb(N19C); the Ab(N19C) mutant produced all oligomeric forms, from monomers to hexamers. These results indicate that both the catalytic domains and the C-terminal t peptides contribute to the capacity of cholinesterases to form and secrete various oligomers. Sequence comparisons show that the differences between the t peptides of AChE and BChE are remarkably conserved among all vertebrates, suggesting that they reflect distinct functional adaptations.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Estructura Secundaria de Proteína , Acetilcolinesterasa/genética , Secuencia de Aminoácidos , Animales , Butirilcolinesterasa/genética , Dominio Catalítico , Humanos , Cinética , Datos de Secuencia Molecular , Mutagénesis , Fragmentos de Péptidos/química , Conformación Proteica , Vertebrados/metabolismo
6.
Chem Biol Interact ; 175(1-3): 30-44, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18541228

RESUMEN

Cholinesterases have been intensively studied for a long time, but still offer many fascinating and fundamental questions regarding their evolution, activity, biosynthesis, folding, post-translational modifications, association with structural proteins (ColQ, PRiMA and maybe others), export or degradation. They constitute an excellent model to study these processes, particularly because of the sensitivity and specificity of enzymic assays. In addition, a number of provocative ideas concerning their proposed non-conventional, or non-catalytic functions deserve to be further documented.


Asunto(s)
Colinesterasas , Secuencia de Aminoácidos , Animales , Apoptosis , Biocatálisis , Adhesión Celular , Diferenciación Celular , Colinesterasas/biosíntesis , Colinesterasas/química , Colinesterasas/genética , Colinesterasas/metabolismo , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Estrés Oxidativo
7.
J Biol Chem ; 283(30): 20722-32, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18511416

RESUMEN

Acetylcholinesterase tetramers are inserted in the basal lamina of neuromuscular junctions or anchored in cell membranes through the interaction of four C-terminal t peptides with proline-rich attachment domains (PRADs) of cholinesterase-associated collagen Q (ColQ) or of the transmembrane protein PRiMA (proline-rich membrane anchor). ColQ and PRiMA differ in the length of their proline-rich motifs (10 and 15 residues, respectively). ColQ has two cysteines upstream of the PRAD, which are disulfide-linked to two AChE(T) subunits ("heavy" dimer), and the other two subunits are disulfide-linked together ("light" dimer). In contrast, PRiMA has four cysteines upstream of the PRAD. We examined whether these cysteines could be linked to AChE(T) subunits in complexes formed with PRiMA in transfected COS cells and in the mammalian brain. For comparison, we studied complexes formed with N-terminal fragments of ColQ, N-terminal fragments of PRiMA, and chimeras in which the upstream regions containing the cysteines were exchanged. We also compared the effect of mutations in the t peptides on their association with the two PRADs. We report that the two PRADs differ in their interaction with AChE(T) subunits; in complexes formed with the PRAD of PRiMA, we observed light dimers, but very few heavy dimers, even though such dimers were formed with the PQ chimera in which the N-terminal region of PRiMA was associated with the PRAD of ColQ. Complexes with PQ or with PRiMA contained heavy components, which migrated abnormally in SDS-PAGE but probably resulted from disulfide bonding of four AChE(T) subunits with the four upstream cysteines of the associated protein.


Asunto(s)
Acetilcolinesterasa/química , Colágeno/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Acetilcolinesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Colágeno/química , Cisteína/química , Dimerización , Proteínas de la Membrana/química , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química
8.
J Biol Chem ; 282(6): 3487-97, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17158452

RESUMEN

The membrane-bound form of acetylcholinesterase (AChE) constitutes the major component of this enzyme in the mammalian brain. These molecules are hetero-oligomers, composed of four AChE catalytic subunits of type T (AChE(T)), associated with a transmembrane protein of type 1, called PRiMA (proline-rich membrane anchor). PRiMA consists of a signal peptide, an extracellular domain that contains a proline-rich motif (14 prolines with an intervening leucine, P4LP10), a transmembrane domain, and a cytoplasmic domain. Expression of AChE(T) subunits in transfected COS cells with a truncated PRiMA, without its transmembrane and cytoplasmic domains (P(stp54) mutant), produced secreted heteromeric complexes (T4-P(stp54)), instead of membrane-bound tetramers. In this study, we used a series of deletions and point mutations to analyze the interaction between the extracellular domain of PRiMA and AChE(T) subunits. We confirmed the importance of the polyproline stretches and defined a peptidic motif (RP4LP10RL), which induces the assembly and secretion of a heteromeric complex with four AChE(T) subunits, nearly as efficiently as the entire extracellular domain of PRiMA. It is noteworthy that deletion of the N-terminal segment preceding the prolines had little effect. Interestingly, short PRiMA mutants, truncated within the proline-rich motif, reduced both cellular and secreted AChE activity, suggesting that their interaction with AChE(T) subunits induces their intracellular degradation.


Asunto(s)
Acetilcolinesterasa/química , Proteínas de la Membrana/fisiología , Complejos Multiproteicos/fisiología , Proteínas del Tejido Nervioso/fisiología , Péptidos/química , Transducción de Señal , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Células COS , Dominio Catalítico/genética , Chlorocebus aethiops , Cricetinae , Espacio Extracelular/química , Espacio Extracelular/genética , Espacio Extracelular/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Péptidos/fisiología , Transporte de Proteínas/genética , Ratas , Eliminación de Secuencia/genética , Transducción de Señal/genética
9.
J Mol Neurosci ; 30(1-2): 75-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17192635

RESUMEN

The gene of mammalian acetylcholinesterase (AChE) generates multiple molecular forms, by alternative splicing of its transcripts and association of the tailed variant (AChET) with structural proteins. In the mammalian brain, the major AChE species consists of AChET tetramers anchored to the cell membrane of neurons by the PRiMA protein (Perrier et al., 2002). Stress and anticholinesterase inhibitors have been reported to induce rapid and long-lasting expression of the readthrough variant (AChER) in the mouse brain (Kaufer et al., 1998). In the readthrough transcript, there is no splicing after the last exon encoding the catalytic domain, so that the entire alternatively spliced 3' region is maintained. It encodes a C-terminal peptide with no specific interaction properties: COS cells transfected with AChER produce a soluble, nonamphiphilic monomeric form. We quantified AChER and total AChE expression in the mouse brain after an immobilization stress and after heat shock in neuroblastoma cells, and compared the observed effects with those induced by irreversible AChE inhibition (Perrier et al., 2005).


Asunto(s)
Acetilcolinesterasa/genética , Encéfalo/enzimología , Inhibidores de la Colinesterasa/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Estrés Psicológico/enzimología , Animales , Línea Celular Tumoral , Masculino , Ratones , Neuroblastoma , ARN Mensajero/genética , Restricción Física , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
J Mol Neurosci ; 30(1-2): 233-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17192683

RESUMEN

Mammalian cholinergic tissues mostly express the T splice variant of acetylcholinesterase, in which the catalytic domain is associated with a C-terminal peptide of 40 residues, called the t peptide (Massoulié, 2002). Homologous t peptides exist in all vertebrate cholinesterases, acetylcholinesterases (AChEs), and butyrylcholinesterases (BChEs): they contain a series of seven conserved aromatic residues, including three tryptophans, and a cysteine at position-4 of their C-terminus. The major AChE isozyme of the nematode Caenorhabditis elegans also contains a similar peptide. Although the C-terminal t peptides do not seem to affect the catalytic activity of cholinesterases, they determine their physiological function, because they allow cholinesterase subunits of type T to form oligomers and to associate with structural anchoring proteins. When reduced to their catalytic domain, AChE subunits without a t peptide are active but remain monomeric and soluble.


Asunto(s)
Colinesterasas/metabolismo , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Colinesterasas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Pliegue de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Chem Biol Interact ; 157-158: 3-14, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16257397

RESUMEN

In vertebrates, the catalytic domain of acetylcholinesterase (AChE) may be associated with several C-terminal peptides generated by alternative splicing in the 3' region of transcripts. The "readthrough" (R) variant results from a lack of splicing after the last exon encoding the catalytic domain. Such a variant has been observed in Torpedo and in mammals; its C-terminal r peptide, also called "AChE Related Peptide" (ARP), is poorly conserved between rodents and humans. In rodents, it is significantly expressed in embryonic tissues and at a very low level in the brain of adult mice; it may be increased under various stress conditions, but remains very low. The "hydrophobic" (H) variant generates glycolipid (GPI)-anchored dimers, which are expressed in muscles of Torpedo, and in blood cells of mammals; H variants exist in Torpedo and in mammals, but apparently not in other vertebrate classes, suggesting that they were lost during evolution of early vertebrates and re-appeared independently in mammals. The "tailed" (T) variant exists in all vertebrate cholinesterases and their C-terminal t peptides are strongly conserved; in mammals, AChE(T) subunits represent the major type of acetylcholinesterase in cholinergic tissues. They produce a wide variety of oligomeric forms, ranging from monomers to heteromeric assemblies containing the anchoring proteins ColQ (collagen-tailed forms) and PRiMA (membrane-bound tetramers), which constitute the major functional enzyme species in mammalian muscles and brain, respectively. The oligomerization of AChE(T) subunits depends largely on the properties of their C-terminal t peptide. These peptides contain seven conserved aromatic residues, including three tryptophans, and are organized in an amphiphilic alpha helix in which these residues form a hydrophobic cluster. The presence of a cysteine is required for dimerization, while aromatic residues are necessary for tetramerization. In the collagen-tailed molecules, four t peptides form a coiled coil around a proline-rich motif (PRAD) located in the N-terminal region of ColQ. The t peptide also strongly influences the folding and cellular trafficking of AChE(T) subunits: the presence of hydrophobic residues induces partial misfolding leading to inactive protein, while aromatic residues, organized or not in an amphiphilic helix, induce intracellular degradation through the "Endoplasmic Reticulum Associated Degradation" (ERAD) pathway, rather than secretion. It has been proposed that the r and t C-terminal peptides, or fragments of these peptides, may exert independent, non cholinergic biological functions: this interesting possibility still needs to be documented, especially in view of their various degrees of evolutionary conservation.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Acetilcolinesterasa/genética , Animales , Humanos , Fragmentos de Péptidos/genética , Unión Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas
12.
J Neurochem ; 94(3): 629-38, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16001972

RESUMEN

Acetylcholinesterase (AChE) exists in various molecular forms, depending on alternative splicing of its transcripts and association with structural proteins. Tetramers of the 'tailed' variant (AChE(T)), which are anchored in the cell membrane of neurons by the PRiMA (Proline Rich Membrane Anchor) protein, constitute the main form of AChE in the mammalian brain. In the mouse brain, stress and anticholinesterase inhibitors have been reported to induce expression of the unspliced 'readthrough' variant (AChE(R)) mRNA which produces a monomeric form. To generalize this observation, we attempted to quantify AChE(R) and AChE(T) after organophosphate intoxication in the mouse brain and compared the observed effects with those of stress induced by swimming or immobilization; we also analyzed the effects of heat shock and AChE inhibition on neuroblastoma cells. Active AChE molecular forms were characterized by sedimentation and non-denaturing electrophoresis, and AChE transcripts were quantified by real-time PCR. We observed a moderate increase of the AChE(R) transcript in some cases, both in the mouse brain and in neuroblastoma cultures, but we did not detect any increase of the corresponding active enzyme.


Asunto(s)
Acetilcolinesterasa/metabolismo , Empalme Alternativo/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Calor , Soman/farmacología , Estrés Fisiológico/enzimología , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/farmacología , Empalme Alternativo/fisiología , Animales , Western Blotting , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular Tumoral , Ácido Desoxicólico/farmacología , Detergentes/farmacología , Interacciones Farmacológicas , Masculino , Ratones , Ratones Endogámicos BALB C , Neuroblastoma , Octoxinol/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/biosíntesis , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Tiempo
13.
J Biol Chem ; 280(2): 878-86, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15452125

RESUMEN

The C-terminal 40-residue t peptide of acetylcholinesterase (AChE) forms an amphiphilic alpha helix with a cluster of seven aromatic residues. It allows oligomerization and induces a partial degradation of AChE subunits through the endoplasmic reticulum-associated degradation pathway. We show that the t peptide induces the misfolding of a fraction of AChE subunits, even when mutations disorganized the cluster of aromatic residues or when these residues were replaced by leucines, indicating that this effect is due to hydrophobic residues. Mutations in the aromatic-rich region affected the cellular fate of AChE in a similar manner, with or without mutations that prevented dimerization. Degradation was decreased and secretion was increased when aromatic residues were replaced by leucines, and the opposite occurred when the amphiphilic alpha helix was disorganized. The last two residues (Asp-Leu) somewhat resembled an endoplasmic reticulum retention signal and caused a partial retention but only in mutants possessing aromatic residues in their t peptide. Our results suggested that several "signals" in the catalytic domain and in the t peptide act cooperatively for AChE quality control.


Asunto(s)
Acetilcolinesterasa/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Secuencia de Aminoácidos , Dimerización , Datos de Secuencia Molecular , Mutación/genética , Péptido Hidrolasas/metabolismo , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
14.
EMBO J ; 23(22): 4394-405, 2004 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-15526038

RESUMEN

Functional localization of acetylcholinesterase (AChE) in vertebrate muscle and brain depends on interaction of the tryptophan amphiphilic tetramerization (WAT) sequence, at the C-terminus of its major splice variant (T), with a proline-rich attachment domain (PRAD), of the anchoring proteins, collagenous (ColQ) and proline-rich membrane anchor. The crystal structure of the WAT/PRAD complex reveals a novel supercoil structure in which four parallel WAT chains form a left-handed superhelix around an antiparallel left-handed PRAD helix resembling polyproline II. The WAT coiled coils possess a WWW motif making repetitive hydrophobic stacking and hydrogen-bond interactions with the PRAD. The WAT chains are related by an approximately 4-fold screw axis around the PRAD. Each WAT makes similar but unique interactions, consistent with an asymmetric pattern of disulfide linkages between the AChE tetramer subunits and ColQ. The P59Q mutation in ColQ, which causes congenital endplate AChE deficiency, and is located within the PRAD, disrupts crucial WAT-WAT and WAT-PRAD interactions. A model is proposed for the synaptic AChE(T) tetramer.


Asunto(s)
Acetilcolinesterasa/química , Péptidos/química , Conformación Proteica , Sinapsis/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Empalme Alternativo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Colágeno/química , Cristalografía por Rayos X , Disulfuros/química , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Musculares/química , Péptidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Espectrometría Raman , Sinapsis/metabolismo , Triptófano/química
15.
Eur J Biochem ; 271(8): 1476-87, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15066173

RESUMEN

The C-terminal t peptide (40 residues) of vertebrate acetylcholinesterase (AChE) T subunits possesses a series of seven conserved aromatic residues and forms an amphiphilic alpha-helix; it allows the formation of homo-oligomers (monomers, dimers and tetramers) and heteromeric associations with the anchoring proteins, ColQ and PRiMA, which contain a proline-rich motif (PRAD). We analyzed the influence of mutations in the t peptide of Torpedo AChE(T) on oligomerization and secretion. Charged residues influenced the distribution of homo-oligomers but had little effect on the heteromeric association with Q(N), a PRAD-containing N-terminal fragment of ColQ. The formation of homo-tetramers and Q(N)-linked tetramers required a central core of four aromatic residues and a peptide segment extending to residue 31; the last nine residues (32-40) were not necessary, although the formation of disulfide bonds by cysteine C37 stabilized T(4) and T(4)-Q(N) tetramers. The last two residues of the t peptide (EL) induced a partial intracellular retention; replacement of the C-terminal CAEL tetrapeptide by KDEL did not prevent tetramerization and heteromeric association with Q(N), indicating that these associations take place in the endoplasmic reticulum. Mutations that disorganize the alpha-helical structure of the t peptide were found to enhance degradation. Co-expression with Q(N) generally increased secretion, mostly as T(4)-Q(N) complexes, but reduced it for some mutants. Thus, mutations in this small, autonomous interaction domain bring information on the features that determine oligomeric associations of AChE(T) subunits and the choice between secretion and degradation.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animales , Células COS , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Torpedo , Transfección
16.
Eur J Biochem ; 271(1): 33-47, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14686917

RESUMEN

Acetylcholinesterase subunits of type T (AChET) possess an alternatively spliced C-terminal peptide (t peptide) which endows them with amphiphilic properties, the capacity to form various homo-oligomers and to associate, as a tetramer, with anchoring proteins containing a proline rich attachment domain (PRAD). The t peptide contains seven conserved aromatic residues. By spectroscopic analyses of the synthetic peptides covering part or all of the t peptide of Torpedo AChET, we show that the region containing the aromatic residues adopts an alpha helical structure, which is favored in the presence of lipids and detergent micelles: these residues therefore form a hydrophobic cluster in a sector of the helix. We also analyzed the formation of disulfide bonds between two different AChET subunits, and between AChET subunits and a PRAD-containing protein [the N-terminal fragment of the ColQ protein (QN)] possessing two cysteines upstream or downstream of the PRAD. This shows that, in the complex formed by four T subunits with QN (T4-QN), the t peptides are not folded on themselves as hairpins but instead are all oriented in the same direction, antiparallel to that of the PRAD. The formation of disulfide bonds between various pairs of cysteines, introduced by mutagenesis at various positions in the t peptides, indicates that this complex possesses a surprising flexibility.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/aislamiento & purificación , Acetilcolinesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos , Electrophorus , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Estructura Secundaria de Proteína
17.
Chembiochem ; 4(8): 762-7, 2003 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-12898628

RESUMEN

The photoregulation of the catalytic activity of butyrylcholinesterase (BChE) was investigated by treating the enzyme with a newly developed carbamylating reagent, N-methyl-N-(2-nitrophenyl)carbamoyl chloride, which has proved to be an efficient photoremovable alcohol-protecting group. BChE was efficiently inhibited in a time- and concentration-dependent manner, and the enzyme could be protected against inhibition by active-site-specific ligands (that is, tacrine). The inactivation kinetics showed a biphasic character, which can be analyzed as the result of the existence of two conformational states in solution. Pseudo-irreversible inactivation of BChE, which results from catalytic serine carbamylation, was suggested by recovery of the enzyme activity after dilution and was demonstrated by X-ray crystallography. Remarkably, the 3D structure of the carbamylated BChE conjugate showed a nonambiguous carbamylation of the catalytic serine residue as the only chemical modification on the protein. The photoreversibility of the enzyme inactivation was analyzed by irradiating the inactivated enzyme at 365 nm and was shown to reach completion in some conditions. The efficient and specific "caging" of BChE, together with the availability of carbamylated BChE crystals, will offer a unique possibility to study the catalytic properties of this enzyme by kinetic crystallography after cryophotolytic uncaging of the enzyme conjugate crystals.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Reactivadores Enzimáticos/farmacología , Serina/química , Animales , Sitios de Unión , Butirilcolinesterasa , Células CHO , Catálisis , Cricetinae , Cristalografía por Rayos X , Humanos , Fotólisis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tacrina/farmacología
18.
EMBO J ; 22(14): 3536-45, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12853469

RESUMEN

The catalytic domain of acetylcholinesterase AChE(T) subunits is followed by a C-terminal T peptide which mediates their association with the proline-rich attachment domain (PRAD) of anchoring proteins. Addition of the T peptide induced intracellular degradation and concomitantly reduced to variable degrees the secretion of AChE species differing in their oligomerization capacity and of human alkaline phosphatase. The T peptide forms an amphiphilic alpha-helix, containing a series of conserved aromatic residues. Replacement of two, four or five aromatic residues gradually suppressed degradation and increased secretion. Co-expression with a PRAD- containing protein induced the assembly of PRAD-linked tetramers in the endoplasmic reticulum (ER) and allowed partial secretion of a dimerization- defective mutant; by masking the aromatic side chains, hetero-oligomerization rescued this enzyme from degradation. Degradation was due to ERAD, since it was not blocked by brefeldin A but was sensitive to proteasome inhibitors. Kifunensine reduced degradation, suggesting a cooperativity between the glycosylated catalytic domain and the non-glycosylated T peptide. This system appears particularly well suited to analyze the mechanisms which determine the degradation of correctly folded multidomain proteins in the ER.


Asunto(s)
Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Retículo Endoplásmico/metabolismo , Péptidos/metabolismo , Subunidades de Proteína/metabolismo , Acetilcolinesterasa/genética , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Animales , Células COS , Chlorocebus aethiops , Secuencia Conservada , Cisteína/metabolismo , Dimerización , Humanos , Lactonas/farmacología , Leupeptinas/farmacología , Datos de Secuencia Molecular , Nippostrongylus/enzimología , Ratas , Serina/metabolismo
19.
Neurochem Res ; 28(3-4): 523-35, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12675141

RESUMEN

In the collagen-tailed forms of cholinesterases, each subunit of a specific triple helical collagen, ColQ, may be attached through a proline-rich domain (PRAD) situated in its N-terminal noncollagenous region, to tetramers of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). This heteromeric assembly ensures the functional anchoring of AChE in extracellulare matrices, for example, at the neuromuscular junction. In this study, we analyzed the influence of deletions in the noncollagenous C-terminal region of ColQ on its capacity to form a triple helix. We show that an 80-residue segment located downstream of the collagenous regions contains the trimerization domain, that it can form trimers without the collagenous regions, and that a pair of cysteines located at the N-boundary of this domain facilitates oligomerization, although it is not absolutely required. We further show that AChE subunits can associate with nonhelical collagen ColQ monomers, forming ColQ-associated tetramers (G4-Q), which are secreted or are anchored at the cell surface when the C-terminal domain of ColQ is replaced by a GPI-addition signal.


Asunto(s)
Acetilcolinesterasa/química , Colágeno/química , Proteínas Musculares , Acetilcolinesterasa/genética , Secuencia de Aminoácidos/genética , Animales , Células COS , Colágeno/genética , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína/fisiología , Torpedo/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA