Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903218

RESUMEN

Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on the development of novel structured materials for gas separation applications, including the combination of various kind of additives in polymeric matrix. Numerous gas pairs have been investigated and the gas transport mechanism in those membranes has been elucidated. However, the selective separation of high purity hydrogen from hydrogen/methane mixtures is still a big challenge and nowadays needs a great improvement to promote the transition towards more sustainable energy source. In this context, because of their remarkable properties, fluoro-based polymers, such as PVDF-HFP and NafionTM, are among the most popular membrane materials, even if a further optimization is needed. In this study, hybrid polymer-based membranes were deposited as thin films on large graphite surfaces. Different weight ratios of PVDF-HFP and NafionTM polymers supported over 200 µm thick graphite foils were tested toward hydrogen/methane gas mixture separation. Small punch tests were carried out to study the membrane mechanical behaviour, reproducing the testing conditions. Finally, the permeability and the gas separation activity of hydrogen/methane over membranes were investigated at room temperature (25 °C) and near atmospheric pressure (using a pressure difference of 1.5 bar). The best performance of the developed membranes was registered when the 4:1 polymer PVDF-HFP/NafionTM weight ratio was used. In particular, starting from the 1:1 hydrogen/methane gas mixture, a 32.6% (v%) H2 enrichment was measured. Furthermore, there was a good agreement between the experimental and theoretical selectivity values.

2.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065931

RESUMEN

Conducting nanofibers of polyaniline (PANI) doped with camphor-10-sulfonic acid (HCSA) and blended with different polymers, such as polymethyl methacrylate (PMMA) and polyvinyl acetate (PVAc), have been fabricated using the electrospinning technique. Scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) were utilized to characterize the morphology and the thermal stability of PANI-blended fibers. An extensive study was performed to understand the copolymer influence on both the structural and surface properties of the realized conductive thin films. Samples main electrical characteristics, as conductivity, specific capacitance and electrochemical performances were tested. The better mats were obtained with the use of PVAc copolymer, which showed a conductivity value two orders of magnitude higher than the PMMA system. Aiming at further improving the electrochemical features of these blended mats, hybrid fibers based on PANI/PVAc/graphene oxide and PANI/PVAc/iron oxide were also produced and characterized. The obtained mats were potentially addressed to numerous practical fields, including sensors, health applications, smart devices and multifunctional textile materials.

3.
Micromachines (Basel) ; 10(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121927

RESUMEN

In this study, UV irradiation was used to improve the response of indium oxide (In2O3) used as a CO sensing material for a resistive sensor operating in a low temperature range, from 25 °C to 150 °C. Different experimental conditions have been compared, varying UV irradiation mode and sensor operating temperature. Results demonstrated that operating the sensor under continuous UV radiation did not improve the response to target gas. The most advantageous condition was obtained when the UV LED irradiated the sensor in regeneration and was turned off during CO detection. In this operating mode, the semiconductor layer showed an apparent "p-type" behavior due to the UV irradiation. Overall, the effect was an improvement of the indium oxide response at 100 °C toward low CO concentrations (from 1 to 10 ppm) that showed higher results than in the dark, which is promising to extend the detection of CO with an In2O3-based sensor in the sub-ppm range.

4.
Materials (Basel) ; 11(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558326

RESUMEN

A new generation of compressor-free heat pumps based on adsorption technology and driven by solar energy is available. Performance and costs are, however, the main obstacles to their commercial diffusion, and more material and system developments are required. In this work, a new coating made of microfibres produced by the electrospinning of polymer/zeolite mixtures is presented. Three different polymer carriers, polyvinyl acetate, polyethylene oxide and polystyrene, have been used together with zeolite SAPO-34 as an adsorbing material. Electrospun microfibres showed a mean diameter ranging from 0.75 µm to 2.16 µm depending on the polymer carrier, with a zeolite content from 60 wt.% to 87 wt.%. Thermal analysis (TGA-DSC) results showed that water desorption from microfibres at T = 150 °C was close to 17 wt.%, a value in agreement with the adsorption capacity of pure SAPO-34. The morphology characterization of coatings demonstrated that the microfibre layers are highly porous and have an elevated surface area.

5.
Int J Biomater ; 2015: 149798, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25815011

RESUMEN

The aim of this study was to evaluate the effect of different specimens dimensions on the mechanical properties of a commercial microfilled resin composite by using a modified ISO 4049 standard protocol, that generally provides specimen dimensions of 25 mm length × 2 mm width × 2 mm height; these standard dimensions are not clinically realistic considering the teeth diameter and length average. Furthermore, the overlapping irradiations required lead to specimens that are not homogeneous with the presence of some flaws due to packaging steps. For this reason, a miniflexural test was employed in this work both to simulate clinically realistic dimensions and to concentrate fewer defects. The flexural tests were performed at varying span length, in the range between 18.5 mm as stated by the ISO 4049 flexural test (IFT) and 10.5 mm according to the miniflexural test (MFT), at the increasing of layers with a 1 mm buildup multilayering technique. The results evidenced the impact of specimen dimensions on mechanical performances and consequently stability of resin-based composite with the formation of an asymmetrical structure which possesses higher stiffness and strength at increasing layering steps.

6.
Langmuir ; 29(23): 7079-86, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23651236

RESUMEN

We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.


Asunto(s)
Dimetilpolisiloxanos/síntesis química , Polietilenglicoles/síntesis química , Zeolitas/síntesis química , Dimetilpolisiloxanos/química , Tamaño de la Partícula , Polietilenglicoles/química , Propiedades de Superficie , Zeolitas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...