Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson ; 342: 107264, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35849974

RESUMEN

Caking is associated with the consolidation of dry powder and granules, leading to losses of function and/or quality. It has been object of studies in the pharmaceutical, food and fertiliser areas since 1920's because of its significant impact on product quality and value. Caking has been described as a three-step event consisting of sorption-dissolution-recrystallisation phases and constitutes a critical factor in fertilisers losses during storage while also hampering fertiliser application. Current methods for the evaluation of water sorption dynamics are expensive, time-consuming and/or inaccurate. This manuscript describes an unprecedented application of low-field 1H NMR relaxometry for the kinetic study of humidity uptake, in real-time, by urea mixed with different concentrations of an anti-caking agent (zeolite). The proposed method allows to follow the water uptake in different domains of the mixed fertiliser/zeolite samples. To our knowledge, this dynamic has not been observed and quantified so far in real-time. Furthermore, we presented the use of 2D-ILT for kinetic studies, being the first dimension the usual transverse relaxation and the second dimension the kinetic one. With this approach, the NMR relaxation times T2 correlated to time constants associated with the uptake kinetics of the water. This method could be extended to several kinetic studies and experiments with temperature variation. Depending on the kinetics of the studied process, the kernel of the Laplace transform must be suitably adapted.


Asunto(s)
Zeolitas , Fertilizantes , Humedad , Cinética , Agua/química , Zeolitas/química
2.
Data Brief ; 41: 107893, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35198674

RESUMEN

High-resolution computed micro-tomography is an important area of science, which correlates well with several experimental methodologies and serves as a basis for advanced computational physics studies, in which high-resolution images are used as input to different scientific simulation models. The dataset presented herein includes (raw) grayscale images obtained using the Bruker Skyscan 1272 X-Ray tomograph; filtered images acquired through contrast enhancement and noise reduction filters; and segmented images obtained by using the IsoData segmentation method. All images have a resolution of 2.25 µm (isometric voxels) and size of 10003 voxels.

3.
Sci Rep ; 11(1): 11370, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131175

RESUMEN

Permeability is the key parameter for quantifying fluid flow in porous rocks. Knowledge of the spatial distribution of the connected pore space allows, in principle, to predict the permeability of a rock sample. However, limitations in feature resolution and approximations at microscopic scales have so far precluded systematic upscaling of permeability predictions. Here, we report fluid flow simulations in pore-scale network representations designed to overcome such limitations. We present a novel capillary network representation with an enhanced level of spatial detail at microscale. We find that the network-based flow simulations predict experimental permeabilities measured at lab scale in the same rock sample without the need for calibration or correction. By applying the method to a broader class of representative geological samples, with permeability values covering two orders of magnitude, we obtain scaling relationships that reveal how mesoscale permeability emerges from microscopic capillary diameter and fluid velocity distributions.

4.
J Magn Reson ; 292: 16-24, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29751275

RESUMEN

Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the analysis of the NMR data for complex porous materials.

5.
J Magn Reson ; 289: 63-71, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29471277

RESUMEN

The NMR measurements of longitudinal and transverse relaxation times and its multidimensional correlations provide useful information about molecular dynamics. However, these experiments are very time-consuming, and many researchers proposed faster experiments to reduce this issue. This paper presents a new way to simultaneously perform T2-T2 Exchange and T1-T2 correlation experiments by taking the advantage of the storage time and the two steps phase cycling used for running the relaxation exchange experiment. The data corresponding to each step is either summed or subtracted to produce the T2-T2 and T1-T2 data, enhancing the information obtained while maintaining the experiment duration. Comparing the results from this technique with traditional NMR experiments it was possible to validate the method.

6.
Philos Trans A Math Phys Eng Sci ; 370(1976): 4770-93, 2012 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-22946040

RESUMEN

Nuclear magnetic resonance is viewed as an important technique for the implementation of many quantum information algorithms and protocols. Although the most straightforward approach is to use the two-level system composed of spin 1/2 nuclei as qubits, quadrupolar nuclei, which possess a spin greater than 1/2, are being used as an alternative. In this study, we show some unique features of quadrupolar systems for quantum information processing, with an emphasis on the ability to execute efficient quantum state tomography (QST) using only global rotations of the spin system, whose performance is shown in detail. By preparing suitable states and implementing logical operations by numerically optimized pulses together with the QST method, we follow the stepwise execution of Grover's algorithm. We also review some work in the literature concerning the relaxation of pseudo-pure states in spin 3/2 systems as well as its modelling in both the Redfield and Kraus formalisms. These data are used to discuss differences in the behaviour of the quantum correlations observed for two-qubit systems implemented by spin 1/2 and quadrupolar spin 3/2 systems, also presented in the literature. The possibilities and advantages of using nuclear quadrupole resonance experiments for quantum information processing are also discussed.

7.
Materials (Basel) ; 6(1): 47-64, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28809293

RESUMEN

In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na⁺ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.

8.
Biopolymers ; 93(6): 520-32, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20091673

RESUMEN

We have studied the molecular dynamics of one of the major macromolecules in articular cartilage, chondroitin sulfate. Applying (13)C high-resolution magic-angle spinning NMR techniques, the NMR signals of all rigid macromolecules in cartilage can be suppressed, allowing the exclusive detection of the highly mobile chondroitin sulfate. The technique is also used to detect the chondroitin sulfate in artificial tissue-engineered cartilage. The tissue-engineered material that is based on matrix producing chondrocytes cultured in a collagen gel should provide properties as close as possible to those of the natural cartilage. Nuclear relaxation times of the chondroitin sulfate were determined for both tissues. Although T(1) relaxation times are rather similar, the T(2) relaxation in tissue-engineered cartilage is significantly shorter. This suggests that the motions of chondroitin sulfate in natural and artificial cartilage are different. The nuclear relaxation times of chondroitin sulfate in natural and tissue-engineered cartilage were modeled using a broad distribution function for the motional correlation times. Although the description of the microscopic molecular dynamics of the chondroitin sulfate in natural and artificial cartilage required the identical broad distribution functions for the correlation times of motion, significant differences in the correlation times of motion that are extracted from the model indicate that the artificial tissue does not fully meet the standards of the natural ideal. This could also be confirmed by macroscopic biomechanical elasticity measurements. Nevertheless, these results suggest that NMR is a useful tool for the investigation of the quality of artificially engineered tissue.


Asunto(s)
Isótopos de Carbono/química , Cartílago/patología , Sulfatos de Condroitina/química , Espectroscopía de Resonancia Magnética/métodos , Animales , Anisotropía , Fenómenos Biomecánicos , Cartílago/química , Simulación por Computador , Elasticidad , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Modelos Anatómicos , Modelos Químicos , Modelos Estadísticos , Porcinos , Temperatura , Ingeniería de Tejidos/métodos
9.
Biochim Biophys Acta ; 1798(2): 266-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19616509

RESUMEN

Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca(2+) sensor protein. It plays a central role in shaping the photoreceptor light response and in light adaptation through the Ca(2+)-dependent regulation of the transmembrane retinal guanylate cyclase (GC). GCAP-2 is N-terminally myristoylated and the full activation of the GC requires this lipid modification. The structural and functional role of the N-terminus and particularly of the myristoyl moiety is currently not well understood. In particular, detailed structural information on the myristoylated N-terminus in the presence of membranes was not available. Therefore, we studied the structure and dynamics of a 19 amino acid peptide representing the myristoylated N-terminus of GCAP-2 bound to lipid membranes by solid-state NMR. (13)C isotropic chemical shifts revealed a random coiled secondary structure of the peptide. Peptide segments up to Ala(9) interact with the membrane surface. Order parameters for Calpha and side chain carbons obtained from DIPSHIFT experiments are relatively low, suggesting high mobility of the membrane-associated peptide. Static (2)H solid-state NMR measurements show that the myristoyl moiety is fully incorporated into the lipid membrane. The parameters of the myristoyl moiety and the DMPC host membrane are quite similar. Furthermore, dynamic parameters (obtained from (2)H NMR relaxation rates) of the peptide's myristic acid chain are also comparable to those of the lipid chains of the host matrix. Therefore, the myristoyl moiety of the N-terminal peptide of GCAP-2 fills a similar conformational space as the surrounding phospholipid chains.


Asunto(s)
Membrana Celular/química , Proteínas Activadoras de la Guanilato-Ciclasa/química , Ácido Mirístico/química , Resonancia Magnética Nuclear Biomolecular/métodos , Procesamiento Proteico-Postraduccional , Animales , Membrana Celular/metabolismo , Proteínas Activadoras de la Guanilato-Ciclasa/metabolismo , Humanos , Ácido Mirístico/metabolismo , Estructura Terciaria de Proteína/fisiología
10.
J Chem Phys ; 128(10): 104505, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18345904

RESUMEN

In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a comparison with spin dynamics simulations based on the solution of the stochastic Liouville-von-Neumann equation is presented. It is shown that at short evolution times (less than 30% of the rotor period), the AW based formulas are suitable for fitting the DIPSHIFT curves and extracting kinetic parameters even in the case of jumplike motions. However, full spin dynamics simulations provide a more reliable treatment and extend the frequency range of the molecular motions accessible by DIPSHIFT experiments. As an experimental test, molecular jumps of imidazol methyl sulfonate and trimethylsulfoxonium iodide, as well as the side-chain motions in the photoluminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene], were characterized. Possible extensions are also discussed.

11.
J Magn Reson ; 191(1): 141-7, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18155935

RESUMEN

We present a minor but essential modification to the CODEX 1D-MAS exchange experiment. The new CONTRA method, which requires minor changes of the original sequence only, has advantages over the previously introduced S-CODEX, since it is less sensitive to artefacts caused by finite pulse lengths. The performance of this variant, including the finite pulse effect, was confirmed by SIMPSON calculations and demonstrated on a number of dynamic systems.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia Magnética/métodos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Procesamiento de Señales Asistido por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Environ Sci Technol ; 41(2): 400-5, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17310698

RESUMEN

The compositions of humic acids (HAs) isolated from cultivated and forested "Terra Preta de Indio" or Amazonian Dark Earth soils (anthropogenic soils) were compared with those from adjacent non-anthropogenic soils (control soils) using elemental and thermogravimetric analyses, and a variety of solid-state nuclear magnetic resonance techniques. The thermogravimetric index, which indicates the molecular thermal resistance, was greater for the anthropogenic soils than for the control soils suggesting polycyclic aromatic components in the former. The cultivated anthropogenic soils were more enriched in C and depleted in H than the anthropogenic soils under forest, as the result of the selective degradation of aliphatic structures and the possible enrichment of H-deficient condensed aromatic structures. The combination of variable amplitude cross-polarization (VACP) and chemical shift anisotropy with total suppression of spinning sidebands experiments with composite pi pulses could be used to quantify the aromaticity of the HAs from the anthropogenic soils. From principal component analysis, using the VACP spectra, it was possible to separate the different constituents of the HAs, such as the carboxylated aromatic structures, from the anthropogenic soils and plant derived compounds. The data show that the HAs from anthropogenic soils have high contents of aryl and ionisable oxygenated functional groups, and the major functionalities from adjacent control soils are oxygenated functional groups from labile structures (carbohydrates, peptides, and with evidence for lignin structures). The anthropogenic soils HAs can be considered to be more recalcitrant, and with more stable reactive functional groups which may, in part, explain their more sustainable fertility due to the organic matter contribution to the soil cation exchange capacity.


Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Sustancias Húmicas/análisis , Suelo/análisis , Brasil , Carbono/análisis , Hidrógeno/análisis , Espectroscopía de Resonancia Magnética , Análisis de Componente Principal , Termogravimetría
13.
Naturwissenschaften ; 93(9): 447-50, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16688435

RESUMEN

There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.


Asunto(s)
Isótopos de Carbono/análisis , Suelo/análisis , Brasil , Agua Dulce , Espectroscopía de Resonancia Magnética , Peso Molecular , Análisis Espectral/instrumentación , Análisis Espectral/métodos
14.
Magn Reson Chem ; 42(2): 276-84, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14745808

RESUMEN

We report solid-state NMR investigations of the effect of temperature and hydration on the molecular mobility of collagen isolated from bovine achilles tendon. (13)C cross-polarization magic angle spinning (MAS) experiments were performed on samples at natural abundance, using NMR methods that detect motionally averaged dipolar interactions and chemical shift anisotropies and also slow reorientational processes. Fast motions with correlation times much shorter than 40 micro s scale dipolar couplings and chemical shift anisotropies of the carbon sites in collagen. These motionally averaged anisotropic interactions provide a measure of the amplitudes of the segmental motions expressed by a molecular order parameter. The data reveal that increasing hydration has a much stronger effect on the amplitude of the molecular processes than increasing temperature. In particular, the Cgamma carbons of the hydroxyproline residues exhibit a strong dependence of the amplitude of motion on the hydration level. This could be correlated with the effect of hydration on the hydrogen bonding structure in collagen, for which this residue is known to play a crucial role. The applicability of 1D MAS exchange experiments to investigate motions on the millisecond time-scale is discussed and first results are presented. Slow motions with correlation times of the order of milliseconds have also been detected for hydrated collagen.


Asunto(s)
Colágeno/química , Tendón Calcáneo/química , Aminoácidos/química , Animales , Isótopos de Carbono , Bovinos , Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Proteica , Agua
15.
J Magn Reson ; 162(1): 67-73, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12762984

RESUMEN

This work describes a numerical methodology to obtain more efficient relaxation filters to selectively retain or remove components based on relaxation times. The procedure uses linear combinations of spectra with various recycle or filter delays to obtain components that are both quantitative and pure. Modulation profiles are calculated assuming exponential relaxation behavior. The method is general and can be applied to a wide range of solution or solid-state NMR experiments including direct-polarization (DP), or filtered cross-polarization (CP) spectra. 13C NMR experiments on isotactic poly(1-butene) and dimethyl sulfone showed the utility of the technique for selectively suppressing peaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...