Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35564122

RESUMEN

Nano-carbon-based materials are widely reported as lithium host materials in lithium metal batteries (LMBs); however, researchers report contradictory claims as to where the lithium plating occurs. Herein, the use of pure hollow core-carbon spheres coated on Cu (PHCCSs@Cu) to study the lithium deposition behavior with respect to this type of structure in lithium anode-free cells is described. It is demonstrated that the lithium showed some initial and limited intercalation into the PHCCSs and then plated on the external carbon walls and the top surface of the carbon coating during the charging process. The unfavorable deposition of lithium inside the PHCCSs is discussed from the viewpoint of lithium-ion transport and lithium nucleation. The application potential of PHCCSs and the data from these LMB studies are also discussed.

2.
ACS Appl Mater Interfaces ; 14(7): 9084-9096, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35156371

RESUMEN

Accumulation of water at the interface of the cathode catalyst layer (CCL) and the diffusion media is a major cause of performance loss in H2/air fuel cells. Proper engineering of the interface by the use of advanced materials and preparation methods can effectively reduce the extent of this loss by improving the transport of water and gas across this interface. Herein, we present detailed modeling results of water and gas transport across this interface for in-house synthesized carbon material with multiple levels of porosity and by considering the interfacial properties of the carbon material and the microporous layer (MPL). The oxygen reduction reaction and the counter-flow transport of oxygen and water within the CCL and MPL pores were modeled considering a partially flooded interface. Well-characterized multimodal porous carbon was chosen as a candidate material for this study, and the effects of all the various levels of porosity in the MPL, wettability, permeability, and the quality of contact between the MPL and CCL on the transport phenomena of fluids were investigated. This study provides new insights into the balance of opposing transport phenomena on the local and overall performance of the catalyst layer and rationalizes the design parameters for an MPL material based on both the material and interfacial properties.

3.
Small ; 17(30): e2102288, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34139106

RESUMEN

An innovative strategy is presented to engineer supported-Pt nanowire (NW) electrocatalysts with a high Pt content for the cathode of hydrogen fuel cells. This involves deposition of graphitic carbon nitride (g-CN) onto 3D multimodal porous carbon (MPC) (denoted as g-CN@MPC) and using the g-CN@MPC as an electrocatalyst support. The protective coating of g-CN on the MPC provides good stability for the electrocatalyst support against electrochemical oxidation, and also enhances oxygen adsorption and provides additional active sites for the oxygen reduction reaction. Compared with commercial carbon black Vulcan XC-72R (denoted as VC) support material, the larger hydrophobic surface area of the g-CN@MPC enables the supported high-content Pt NWs to disperse uniformly on the support. In addition, the unique 3D interconnected pore networks facilitate improved mass transport within the g-CN@MPC support material. As a result, the g-CN@MPC-supported high-content Pt catalysts show improved performance with respect to their counterparts, namely, MPC, VC, and g-CN@VC-supported Pt NW catalysts and the conventional Pt nanoparticle (NP) catalyst (i.e., Pt(20 wt%)NPs/VC (Johnson Matthey)) used as the benchmark. More importantly, the g-CN-tailored high-content Pt NW (≈60 wt%) electrocatalyst demonstrates high PEM fuel cell power/performance at a very low cathode catalyst loading (≈0.1 mgPt  cm-2 ).

4.
ACS Appl Mater Interfaces ; 13(3): 3748-3761, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33442973

RESUMEN

Adoption of proton exchange membrane (PEM) water electrolysis technology on a global level will demand a significant reduction of today's iridium loadings in the anode catalyst layers of PEM electrolyzers. However, new catalyst and electrode designs with reduced Ir content have been suffering from limited stability caused by (electro)chemical degradation. This has remained a serious impediment to a wider commercialization of larger-scale PEM electrolysis technology. In this combined DFT computational and experimental study, we investigate a novel family of iridium-niobium mixed metal oxide thin-film catalysts for the oxygen evolution reaction (OER), some of which exhibit greatly enhanced stability, such as minimized voltage degradation and reduced Ir dissolution with respect to the industry benchmark IrOx catalyst. More specifically, we report an unusually durable IrNbOx electrocatalyst with improved catalytic performance compared to an IrOx benchmark catalyst prepared in-house and a commercial benchmark catalyst (Umicore Elyst Ir75 0480) at significantly reduced Ir catalyst cost. Catalyst stability was assessed by conventional and newly developed accelerated degradation tests, and the mechanistic origins were analyzed and are discussed. To achieve this, the IrNbOx mixed metal oxide catalyst and its water splitting kinetics were investigated by a host of techniques such as synchrotron-based NEXAFS analysis and XPS, electrochemistry, and ab initio DFT calculations as well as STEM-EDX cross-sectional analysis. These analyses highlight a number of important structural differences to other recently reported bimetallic OER catalysts in the literature. On the methodological side, we introduce, validate, and utilize a new, nondestructive XRF-based catalyst stability monitoring technique that will benefit future catalyst development. Furthermore, the present study identifies new specific catalysts and experimental strategies for stepwise reducing the Ir demand of PEM water electrolyzers on their long way toward adoption at a larger scale.

5.
Chem Commun (Camb) ; 55(14): 2082-2085, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30693914

RESUMEN

Chemically-prepared MnO2 containing a highly crystalline ramsdellite phase was tested as a cathode material in aqueous Zn-salt (ZnSO4 and Zn(CF3SO3)2) based electrolytes for the first time. This aqueous MnO2/Zn cell has shown excellent performance and reversibility, retaining ≈65% of its initial capacity for more than 1000 cycles. The charge storage mechanism is complex and includes a ramsdellite/tetragonal spinel two-phase reaction.

6.
Small ; 14(26): e1800729, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29855136

RESUMEN

A proof-of-concept for the fabrication of genetically customizable biogenic materials for photovoltaic applications is presented. E. coli is first genetically engineered to heterologously express the carotenoid biosynthetic pathway from plants. This modification yields a strain that overproduces the photoactive pigment lycopene. The pigment-producing cells are then coated with TiO2 nanoparticles via a tryptophan-mediated supramolecular interface, and subsequent incorporation of the resulting biogenic material (cells@TiO2 ) as an anode in an I- /I3- -based dye-sensitized solar cell yields an excellent photovoltaic (PV) response. This work lays strong foundations for the development of bio-PV materials and next-generation organic optoelectronics that are green, inexpensive, and easy to manufacture.


Asunto(s)
Materiales Biocompatibles/química , Energía Solar , Electroquímica , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Licopeno/análisis , Titanio/farmacología , Difracción de Rayos X
7.
Angew Chem Int Ed Engl ; 56(22): 5994-6021, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-27805788

RESUMEN

This Review addresses the technical challenges, scientific basis, recent progress, and outlook with respect to the stability and degradation of catalysts for the oxygen evolution reaction (OER) operating at electrolyzer anodes in acidic environments with an emphasis on ion exchange membrane applications. First, the term "catalyst stability" is clarified, as well as current performance targets, major catalyst degradation mechanisms, and their mitigation strategies. Suitable in situ experimental methods are then evaluated to give insight into catalyst degradation and possible pathways to tune OER catalyst stability. Finally, the importance of identifying universal figures of merit for stability is highlighted, leading to a comprehensive accelerated lifetime test that could yield comparable performance data across different laboratories and catalyst types. The aim of this Review is to help disseminate and stress the important relationships between structure, composition, and stability of OER catalysts under different operating conditions.

8.
ACS Appl Mater Interfaces ; 6(17): 15488-98, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25140917

RESUMEN

In this study, a simple and reproducible synthesis strategy was employed to fabricate TiO2 microspheres with hierarchical nanostructure. The microspheres are macroscopic in the bulk particle size (several hundreds to more than 1000 µm), but they are actually composed of P25 nanoparticles as the building units. Although it is simple in the assembly of P25 nanoparticles, the structure of the as-prepared TiO2 microspheres becomes unique because a hierarchical porosity composed of macropores, larger mesopores (ca. 12.4 nm), and smaller mesopores (ca. 2.3 nm) has been developed. The interconnected macropores and larger mesopores can be utilized as fast paths for mass transport. In addition, this hierarchical nanostructure may also contribute to some extent to the enhanced photocatalytic activity due to increased multilight reflection/scattering. Compared with the state-of-the-art photocatalyst, commercial Degussa P25 TiO2, the as-prepared TiO2 microsphere catalyst has demonstrated significant enhancement in photodriven conversion of CO2 into the end product CH4. Further enhancement in photodriven conversion of CO2 into CH4 can be easily achieved by the incorporation of metals such as Pt. The preliminary experiments with Pt loading reveal that there is still much potential for considerable improvement in TiO2 microsphere based photocatalysts. Most interestingly and significantly, the synthesis strategy is simple and large quantity of TiO2 microspheres (i.e., several hundred grams) can be easily prepared at one time in the lab, which makes large-scale industrial synthesis of TiO2 microspheres feasible and less expensive.

9.
ChemSusChem ; 6(11): 2137-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24039111

RESUMEN

The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 µmol h(-1) cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst.


Asunto(s)
Agua Potable/química , Suministros de Energía Eléctrica , Electrólisis , Peróxido de Hidrógeno/química , Membranas Artificiales , Protones , Purificación del Agua/métodos , Cobalto/química , Difusión , Electroquímica , Electrodos , Intercambio Iónico , Politetrafluoroetileno/química , Purificación del Agua/instrumentación
10.
ChemSusChem ; 2(7): 658-64, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19554605

RESUMEN

The stability and oxygen reduction activity of two carbon-supported catalyst materials are reported. The catalysts, Se/Ru and Se/(Ru-Mo), were prepared by using a chemical reduction method. The catalyst nanoparticles were evenly dispersed onto globular amorphous carbon supports, and their average size was ca. 2.4 nm. Thermal treatment at 500 °C for 2 h in an inert argon atmosphere resulted in coarsening of the nanoparticles, and also in some decrease of their activity. A gradual reduction of activity was also observed for Se/Ru during potential-cycle experiments. However, the incorporation of small amounts of Mo into the Se/Ru catalysts considerably improved the stability of the catalyst against dissolution. The Mo-containing samples showed excellent oxygen reduction activities even after cycling the potential 1000 times between 0.7 and 0.9 V. Furthermore, they showed excellent fuel-cell behavior. The performance of the Se/Ru catalysts is greatly improved by the addition of small amounts of elemental Mo. Possible mechanisms responsible for the improvement of the activity are discussed.


Asunto(s)
Carbono/química , Nanopartículas del Metal/química , Molibdeno/química , Oxígeno/química , Rutenio/química , Selenio/química , Catálisis , Electroquímica , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Difracción de Rayos X
11.
Faraday Discuss ; 140: 269-81; discussion 297-317, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19213322

RESUMEN

Carbon-supported Se/Ru(Se) catalysts of a broad range of composition were synthesized via a reduction procedure in which a mixture of RuCl3, SeO2 and Black Pearl carbon was treated with NaBH4 in basic media at room temperature. Physical characterization of the catalyst was performed by X-ray diffraction, energy dispersive X-ray spectroscopy and by high resolution transmission electron microscopy. The effect of NaOH addition during the reduction by NaBH4 and the impact of a post-reduction thermal treatment at 500 degrees C were interrogated. The activity of the catalyst towards the oxygen reduction reaction was studied by the use of a rotating disk electrode. It was found that the half-wave potential for the oxygen reduction reaction was about 0.78 V vs. RHE. The Se-to-Ru ratio and metal loading on carbon were optimized for the oxygen reduction reaction and the optimized catalyst was tested at the cathode of a polymer electrolyte fuel cell. The stability of the Se/Ru(Se) catalyst was evaluated by electrochemical cycling and by leaching the catalyst in 0.5 M H2SO4 at 80 degrees C.


Asunto(s)
Suministros de Energía Eléctrica , Electroquímica/métodos , Electrodos , Oxígeno/química , Rutenio/química , Selenio/química , Agua/química , Catálisis , Simulación por Computador , Transporte de Electrón , Modelos Químicos , Oxidación-Reducción , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...