Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37510034

RESUMEN

In this work, we present an Opto-Electro-Mechanical Modulator (OEMM) for RF-to-optical transduction realized via an ultra-coherent nanomembrane resonator capacitively coupled to an rf injection circuit made of a microfabricated read-out able to improve the electro-optomechanical interaction. This device configuration can be embedded in a Fabry-Perot cavity for electromagnetic cooling of the LC circuit in a dilution refrigerator exploiting the opto-electro-mechanical interaction. To this aim, an optically measured steady-state frequency shift of 380 Hz was seen with a polarization voltage of 30 V and a Q-factor of the assembled device above 106 at room temperature. The rf-sputtered titanium nitride layer can be made superconductive to develop efficient quantum transducers.

2.
Phys Rev Lett ; 118(2): 021302, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128622

RESUMEN

A search for a new scalar field, called moduli, has been performed using the cryogenic resonant-mass AURIGA detector. Predicted by string theory, moduli may provide a significant contribution to the dark matter (DM) component of our Universe. If this is the case, the interaction of ordinary matter with the local DM moduli, forming the Galaxy halo, will cause an oscillation of solid bodies with a frequency corresponding to the mass of moduli. In the sensitive band of AURIGA, some 100 Hz at around 1 kHz, the expected signal, with Q=△f/f∼10^{6}, is a narrow peak, △f∼1 mHz. Here the detector strain sensitivity is h_{s}∼2×10^{-21} Hz^{-1/2}, within a factor of 2. These numbers translate to upper limits at 95% C.L. on the moduli coupling to ordinary matter (d_{e}+d_{m_{e}})≲10^{-5} around masses m_{ϕ}=3.6×10^{-12} eV, for the standard DM halo model with ρ_{DM}=0.3 GeV/cm^{3}.

3.
Nat Commun ; 6: 7503, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26088965

RESUMEN

A minimal observable length is a common feature of theories that aim to merge quantum physics and gravity. Quantum mechanically, this concept is associated with a nonzero minimal uncertainty in position measurements, which is encoded in deformed commutation relations. In spite of increasing theoretical interest, the subject suffers from the complete lack of dedicated experiments and bounds to the deformation parameters have just been extrapolated from indirect measurements. As recently proposed, low-energy mechanical oscillators could allow to reveal the effect of a modified commutator. Here we analyze the free evolution of high-quality factor micro- and nano-oscillators, spanning a wide range of masses around the Planck mass mP (≈ 22 µg). The direct check against a model of deformed dynamics substantially lowers the previous limits on the parameters quantifying the commutator deformation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25314407

RESUMEN

We present an experimental investigation of the statistical properties of the position fluctuations of low-loss oscillators in nonequilibrium steady states. The oscillators are coupled to a heat bath, and a nonequilibrium steady state is produced by flowing a constant heat flux, setting a temperature difference across the oscillators. We investigated the distribution of the measurements of the square of the oscillator position and searched for signs of changes with respect to the equilibrium case. We found that, after normalization by the mean value, the second, third, and fourth standardized statistical moments are not modified by the underlying thermodynamic state. This differs from the behavior of the absolute, i.e., not normalized, second moment, which is strongly affected by temperature gradients and heat fluxes. We illustrate this with a numerical experiment in which we study via molecular dynamics the fluctuations of the length of a one-dimensional chain of identical particles interacting via anharmonic interparticle potentials, with the extremes thermostated at different temperatures: we use the variance of the length in correspondence to its first elastic mode of resonance to define an effective temperature which we observe to depart from the thermodynamic one in the nonequilibrium states. We investigate the effect of changing the interparticle potential and show that the qualitative behavior of the nonequilibrium excess is unchanged. Our numerical results are consistent with the chain length being Gaussian distributed in the nonequilibrium states. Our experimental investigation reveals that the position variance is the only, and crucially easily accessible, observable for distinguishing equilibrium from nonequilibrium steady states. The consequences of this fact for the design of interferometric gravitational wave detectors are discussed.


Asunto(s)
Calor , Fenómenos Mecánicos , Modelos Teóricos , Metales
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 2): 066605, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23005235

RESUMEN

We study experimentally, numerically, and theoretically the elastic response of mechanical resonators along which the temperature is not uniform, as a consequence of the onset of steady-state thermal gradients. Two experimental setups and designs are employed, both using low-loss materials. In both cases, we monitor the resonance frequencies of specific modes of vibration, as they vary along with variations of temperatures and of temperature differences. In one case, we consider the first longitudinal mode of vibration of an aluminum alloy resonator; in the other case, we consider the antisymmetric torsion modes of a silicon resonator. By defining the average temperature as the volume-weighted mean of the temperatures of the respective elastic sections, we find out that the elastic response of an object depends solely on it, regardless of whether a thermal gradient exists and, up to 10% imbalance, regardless of its magnitude. The numerical model employs a chain of anharmonic oscillators, with first- and second-neighbor interactions and temperature profiles satisfying Fourier's Law to a good degree. Its analysis confirms, for the most part, the experimental findings and it is explained theoretically from a statistical mechanics perspective with a loose notion of local equilibrium.


Asunto(s)
Módulo de Elasticidad , Sistemas Microelectromecánicos/métodos , Modelos Teóricos , Oscilometría/métodos , Simulación por Computador , Conductividad Térmica
6.
Rev Sci Instrum ; 81(3): 035115, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20370221

RESUMEN

In this paper we report about the setup we designed to isolate at about 1.5 kHz from mechanical noise an experimental payload of about 6.6 kg mass. We discuss the design guidelines and optimization by finite element analysis and we characterize the suspension performance by experimental measurements. While providing an attenuation of about 180 dB in all spatial directions at 1.5 kHz, our passive system is very compact and can be easily replicated whenever the need of a volume of few liters with very low vibration noise level in the 1-2 kHz range is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...