Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(12): 5822-5834, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37842783

RESUMEN

In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.

2.
ACS Nano ; 15(4): 6499-6506, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33769788

RESUMEN

Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.

3.
Sci Adv ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523833

RESUMEN

Advances in optoelectronics require materials with novel and engineered characteristics. A class of materials that has garnered tremendous interest is metal-halide perovskites, stimulated by meteoric increases in photovoltaic efficiencies of perovskite solar cells. In addition, recent advances have applied perovskite nanocrystals (NCs) in light-emitting devices. It was found recently that, for cesium lead-halide perovskite NCs, their unusually efficient light emission may be due to a unique excitonic fine structure composed of three bright triplet states that minimally interact with a proximal dark singlet state. To study this fine structure without isolating single NCs, we use multidimensional coherent spectroscopy at cryogenic temperatures to reveal coherences involving triplet states of a CsPbI3 NC ensemble. Picosecond time scale dephasing times are measured for both triplet and inter-triplet coherences, from which we infer a unique exciton fine structure level ordering composed of a dark state energetically positioned within the bright triplet manifold.

4.
Angew Chem Int Ed Engl ; 59(28): 11501-11509, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32297421

RESUMEN

CsPbX3 perovskite nanoplates (PNPLs) were formed in a synthesis driven by SnX4 (X=Cl, Br, I) salts. The role played by these hard Lewis acids in directing PNPL formation is addressed. Sn4+ disturbs the acid-base equilibrium of the system, increasing the protonation rate of oleylamine and inducing anisotropic growth of nanocrystals. Sn4+ cations influence the reaction dynamics owing to complexation with oleylamine molecules. By monitoring the photoluminescence excitation and photoluminescence (PL) spectra of the PNPLs grown at different temperatures, the influence of the thickness on their optical properties is mapped. Time-resolved and spectrally resolved PL for colloidal dispersions with different optical densities reveals that the dependence of the overall PL lifetime on the emission wavelength do not originate from energy transfer between PNPLs but from the contribution of PNPLs with distinct thickness, indicating that thicker PNPLs exhibit longer PL lifetimes.

5.
J Chem Phys ; 151(19): 191103, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757140

RESUMEN

The bandgaps of CsPbI3 perovskite nanocrystals are measured by absorption spectroscopy at cryogenic temperatures. Anomalous bandgap shifts are observed in CsPbI3 nanocubes and nanoplatelets, which are modeled accurately by bandgap renormalization due to lattice vibrational modes. We find that decreasing dimensionality of the CsPbI3 lattice in nanoplatelets greatly reduces electron-phonon coupling, and dominant out-of-plane quantum confinement results in a homogeneously broadened absorption line shape down to cryogenic temperatures. An absorption tail forms at low-temperatures in CsPbI3 nanocubes, which we attribute to shallow defect states positioned near the valence band edge.

6.
J Phys Chem Lett ; 9(12): 3478-3484, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29882410

RESUMEN

Perovskite quantum dots (PQDs) emerged as a promising class of material for applications in lighting devices, including light emitting diodes and lasers. In this work, we explore nonlinear absorption properties of PQDs showing the spectral signatures and the size dependence of their two-photon absorption (2PA) cross-section, which can reach values higher than 106 GM. The large 2PA cross section allows for low threshold two-photon induced amplified spontaneous emission (ASE), which can be as low as 1.6 mJ/cm2. We also show that the ASE properties are strongly dependent on the nanomaterial size, and that the ASE threshold, in terms of the average number of excitons, decreases for smaller PQDs. Investigating the PQDs biexciton binding energy, we observe strong correlation between the increasing on the biexciton binding energy and the decreasing on the ASE threshold, suggesting that ASE in PQDs is a biexciton-assisted process.

7.
ACS Nano ; 10(9): 8603-9, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27574807

RESUMEN

Cesium lead halide perovskite quantum dots (PQDs) have emerged as a promising new platform for lighting applications. However, to date, light emitting diodes (LED) based on these materials exhibit limited efficiencies. One hypothesized limiting factor is fast nonradiative multiexciton Auger recombination. Using ultrafast spectroscopic techniques, we investigate multicarrier interaction and recombination mechanisms in cesium lead halide PQDs. By mapping the dependence of the biexciton Auger lifetime and the biexciton binding energy on nanomaterial size and composition, we find unusually strong Coulomb interactions among multiexcitons in PQDs. This results in weakly emissive biexcitons and trions, and accounts for low light emission efficiencies. We observe that, for strong confinement, the biexciton lifetime depends linearly on the PQD volume. This dependence becomes sublinear in the weak confinement regime as the PQD size increases beyond the Bohr radius. We demonstrate that Auger recombination is faster in PQDs compared to CdSe nanoparticles having the same volume, suggesting a stronger Coulombic interaction in the PQDs. We confirm this by demonstrating an increased biexciton binding energy, which reaches a maximum of about 100 meV, fully three times larger than in CdSe quantum dots. The biexciton shift can lead to low-threshold optical gain in these materials. These findings also suggest that materials engineering to reduce Coulombic interaction in cesium lead halide PQDs could improve prospects for high efficiency optoelectronic devices. Core-shell structures, in particular type-II nanostructures, which are known to reduce the bandedge Coulomb interaction in CdSe/CdS, could beneficially be applied to PQDs with the goal of increasing their potential in lighting applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...