Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 163(1): 73-81, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19482064

RESUMEN

Small-conductance calcium-activated K(+) channels 1-3 (SK1-3) are important for neuronal firing regulation and are considered putative CNS drug targets. For instance non-selective SK blockers improve performance in animal models of cognition. The SK subtype(s) involved herein awaits identification and the question is difficult to address pharmacologically due to the lack of subtype-selective SK-channel modulators. In this study, we used doxycycline-induced conditional SK3-deficient (T/T) mice to address the cognitive consequences of selective SK3 deficiency. In T/T mice SK3 protein is near-eliminated from the brain following doxycycline treatment. We tested T/T and wild type (WT) littermate mice in five distinct learning and memory paradigms. In Y-maze spontaneous alternations and five-trial inhibitory avoidance the performance of T/T mice was markedly inferior to WT mice. In contrast, T/T and WT mice performed equally well in passive avoidance, object recognition and the Morris water maze. Thus, some aspects of working/short-term memory are disrupted in T/T mice. Using in situ hybridization, we further found the cognitive deficits in T/T mice to be paralleled by reduced brain-derived neurotrophic factor (BDNF) mRNA expression in the dentate gyrus and CA3 of the hippocampus. BDNF mRNA levels in the frontal cortex were not affected. BDNF has been crucially implicated in many cognitive processes. Hence, the biological substrate for the cognitive impairments in T/T mice could conceivably entail reduced trophic support of the hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Hipocampo/metabolismo , ARN Mensajero/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Animales , Antibacterianos/farmacología , Supervivencia Celular/genética , Trastornos del Conocimiento/fisiopatología , Citoprotección/genética , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Doxiciclina/farmacología , Regulación de la Expresión Génica/fisiología , Hipocampo/fisiopatología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Genes Brain Behav ; 7(8): 836-48, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18616612

RESUMEN

SK3 K(+) channels influence neuronal excitability and are present in 5-hydroxytryptamine (5-HT) and dopamine (DA) nuclei in the brain stem. We therefore hypothesized that SK3 channels affect 5-HT and DA neurotransmission and associated behaviors. To explore this, we used doxycycline-induced conditional SK3-deficient (T/T) mice. In microdialysis, T/T mice had elevated baseline levels of striatal extracellular DA and the metabolites dihydroxyphenylacetic acid and homovanillic acid. While baseline hippocampal extracellular 5-HT was unchanged in T/T mice, the 5-HT response to the 5-HT transporter inhibitor citalopram was enhanced. Furthermore, baseline levels of the 5-HT metabolite 5-hydroxyindoleacetic acid were elevated in T/T mice. T/T mice performed equally to wild type (WT) in most sensory and motor tests, indicating that SK3 deficiency does not lead to gross impairments. In the forced swim and tail suspension tests, the T/T mice displayed reduced immobility compared with WT, indicative of an antidepressant-like phenotype. Female T/T mice were more anxious in the zero maze. In contrast, anxiety-like behaviors in the open-field and four-plate tests were unchanged in T/T mice of both sexes. Home cage diurnal activity was also unchanged in T/T mice. However, SK3 deficiency had a complex effect on activity responses to novelty: T/T mice showed decreased, increased or unchanged activity responses to novelty, depending on sex and context. In summary, we report that SK3 deficiency leads to enhanced DA and 5-HT neurotransmission accompanied by distinct alterations in emotional behaviors.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Dopamina/metabolismo , Emociones/fisiología , Serotonina/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Animales , Antibacterianos/farmacología , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Citalopram/farmacología , Doxiciclina/farmacología , Conducta Exploratoria/fisiología , Femenino , Ácido Hidroxiindolacético/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/fisiopatología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Caracteres Sexuales , Transmisión Sináptica/genética
3.
Am J Physiol Regul Integr Comp Physiol ; 294(5): R1737-43, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18353877

RESUMEN

Small-conductance Ca(2+)-activated K(+) (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing beta-galactosidase (beta-gal) under the direction of the SK2 promoter (SK2 beta-gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2(-/-) mice) to assess SK2 function. In SK2 beta-gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2(+/+)) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC(50) = 0.16 nM), whereas phasic contractions of SK2(-/-) strips were unaffected. Nerve-mediated contractions of SK2(+/+) UBSM strips were also increased by apamin, an effect absent in SK2(-/-) strips. Apamin increased the sensitivity of SK2(+/+) UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 +/- 4 Hz, n = 6; apamin, 12 +/- 2 Hz, n = 7; P < 0.05). In contrast, the sensitivity of SK2(-/-) UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Vejiga Urinaria/metabolismo , Animales , Apamina/farmacología , Interpretación Estadística de Datos , Estimulación Eléctrica , Genes Reporteros/genética , Técnicas In Vitro , Ratones , Ratones Noqueados , Contracción Muscular/fisiología , Músculo Liso/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Suramina/farmacología , Vejiga Urinaria/efectos de los fármacos , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
4.
Biochim Biophys Acta ; 1518(1-2): 36-46, 2001 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-11267657

RESUMEN

Small conductance calcium-gated K(+) channels (SK channels) are encoded by the three SK genes, SK1, SK2, and SK3. These channels likely contribute to slow synaptic afterhyperpolarizations of apamin-sensitive and apamin-insensitive types. SK channels are also widely expressed outside the nervous system. The mouse SK1 gene comprises at least 12 exons extending across 19.8 kb of genomic DNA. This gene encodes a complex pattern of alternatively spliced SK1 transcripts widely expressed among mouse tissues. These transcripts exhibit at least four distinct 5'-nucleotide sequence variants encoding at least two N-terminal amino acid sequences. Optional inclusion of exons 7 and 9, together with two alternate splice donor sites in exon 8, yields transcripts encoding eight variant C-terminal amino acid sequences for SK1. These include an altered putative S6 transmembrane span, modification of the C-terminal cytoplasmic domain binding site for calmodulin, and generation of two alternate predicted binding sites for PDZ domain-containing proteins. 20 of the 32 predicted mouse SK1 transcripts are expressed in brain at levels sufficient to allow consistent detection, and encode 16 SK1 polypeptide variants. Only four of these 16 polypeptides preserve the ability to bind calmodulin in a Ca(2+)-independent manner. Mouse SK1 also exhibits novel, strain-specific, length polymorphism of a polyglutamate repeat in the N-terminal cytoplasmic domain. The evolutionary conservation of this complex transcription pattern suggests a possible role in the tuning of SK1 channel function.


Asunto(s)
Perfilación de la Expresión Génica , Canales de Potasio Calcio-Activados , Canales de Potasio/genética , Transcripción Genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Calmodulina/metabolismo , Clonación Molecular , Citoplasma/metabolismo , ADN Complementario , Humanos , Ratones , Datos de Secuencia Molecular , Péptidos/genética , Ácido Poliglutámico , Polimorfismo Genético , Canales de Potasio/metabolismo , ARN Mensajero , Ratas , Secuencias Repetitivas de Aminoácido , Homología de Secuencia de Aminoácido , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
5.
Science ; 289(5486): 1942-6, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10988076

RESUMEN

In excitable cells, small-conductance Ca2+-activated potassium channels (SK channels) are responsible for the slow after-hyperpolarization that often follows an action potential. Three SK channel subunits have been molecularly characterized. The SK3 gene was targeted by homologous recombination for the insertion of a gene switch that permitted experimental regulation of SK3 expression while retaining normal SK3 promoter function. An absence of SK3 did not present overt phenotypic consequences. However, SK3 overexpression induced abnormal respiratory responses to hypoxia and compromised parturition. Both conditions were corrected by silencing the gene. The results implicate SK3 channels as potential therapeutic targets for disorders such as sleep apnea or sudden infant death syndrome and for regulating uterine contractions during labor.


Asunto(s)
Trabajo de Parto/fisiología , Canales de Potasio Calcio-Activados , Canales de Potasio/fisiología , Fenómenos Fisiológicos Respiratorios , Regiones no Traducidas 5' , Potenciales de Acción , Animales , Encéfalo/metabolismo , Cruzamientos Genéticos , Técnicas de Cultivo , Doxiciclina/farmacología , Femenino , Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Marcación de Gen , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Canales de Potasio/genética , Embarazo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
6.
Cytogenet Cell Genet ; 86(1): 70-3, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10516439

RESUMEN

Small-conductance, calcium-activated potassium channels contribute to the afterhyperpolarization in central neurons and other cell types. Because these channels regulate neuronal excitability, defects in their genes could cause excitability disorders. The human cDNA encoding one such channel, SK1 (KCNN1), was recently cloned. Here we describe the gene structure of KCNN1 and its localization by radiation hybrid mapping to chromosome 19p13.1.


Asunto(s)
Cromosomas Humanos Par 19/genética , Mapeo Físico de Cromosoma , Canales de Potasio Calcio-Activados , Canales de Potasio/genética , Animales , Secuencia de Bases , Clonación Molecular , Exones/genética , Biblioteca Genómica , Humanos , Células Híbridas , Intrones/genética , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Ácido Nucleico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
7.
J Neurosci ; 19(20): 8830-8, 1999 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-10516302

RESUMEN

Small conductance Ca(2+)-activated potassium channels (SK channels) are coassembled complexes of pore-forming SK alpha subunits and calmodulin. We proposed a model for channel activation in which Ca2+ binding to calmodulin induces conformational rearrangements in calmodulin and the alpha subunits that result in channel gating. We now report fluorescence measurements that indicate conformational changes in the alpha subunit after calmodulin binding and Ca2+ binding to the alpha subunit-calmodulin complex. Two-hybrid experiments showed that the Ca(2+)-independent interaction of calmodulin with the alpha subunits requires only the C-terminal domain of calmodulin and is mediated by two noncontiguous subregions; the ability of the E-F hands to bind Ca2+ is not required. Although SK alpha subunits lack a consensus calmodulin-binding motif, mutagenesis experiments identified two positively charged residues required for Ca(2+)-independent interactions with calmodulin. Electrophysiological recordings of SK2 channels in membrane patches from oocytes coexpressing mutant calmodulins revealed that channel gating is mediated by Ca2+ binding to the first and second E-F hand motifs in the N-terminal domain of calmodulin. Taken together, the results support a calmodulin- and Ca(2+)-calmodulin-dependent conformational change in the channel alpha subunits, in which different domains of calmodulin are responsible for Ca(2+)-dependent and Ca(2+)-independent interactions. In addition, calmodulin is associated with each alpha subunit and must bind at least one Ca2+ ion for channel gating. Based on these results, a state model for Ca2+ gating was developed that simulates alterations in SK channel Ca2+ sensitivity and cooperativity associated with mutations in CaM.


Asunto(s)
Calcio/fisiología , Calmodulina/fisiología , Canales de Potasio Calcio-Activados , Canales de Potasio/fisiología , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Femenino , Activación del Canal Iónico/fisiología , Modelos Biológicos , Oocitos , Canales de Potasio/genética , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Xenopus
8.
Gynecol Oncol ; 74(3): 408-15, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10479501

RESUMEN

UNLABELLED: HER-2/neu is a potent oncogene that predicts poor outcome when overexpressed in ovarian cancer. The SKOV-3 ovarian carcinoma cell line, one of the only models for HER2-driven ovarian cancer, expresses a major uncharacterized 8-kb alternative HER-2 transcript. OBJECTIVES: The aim of this study was to characterize the structure and determine the origin of the alternative sequence and examine the possible role of the 8-kb alternative transcript in overexpression of the HER-2 gene. METHODS: The structure of the 8-kb transcript was investigated using polymerase chain reaction (PCR) and nucleotide sequencing of cDNA clones. PCR analysis of genomic DNA was used to assess the origin of the 8-kb transcript. The stability of the 8-kb mRNA was assessed by Northern blot analysis of RNA extracted from cells treated with transcriptional inhibitors. RESULTS: Similar 5'UTR and coding sequence but an extended 3'UTR were contained in the 8-kb compared to the well-characterized 4.5-kb HER-2 transcript. Genomic DNA had continuity between the novel 3'UTR sequence from the 8-kb transcript and adjacent HER-2 terminal exon sequence. The 8-kb transcript had a half-life of 13 h compared to 5.5 h for the 4.5-kb transcript (P<0.01). CONCLUSIONS: The 8-kb transcript is generated from alternative polyadenylation site usage rather than gene rearrangement. Since the 8-kb transcript contains alternative sequence found at the 3' end of the normal HER-2 gene, it could be expressed in other cells. Increased stability of the 8-kb transcript may confer a selective advantage for SKOV-3 cells by providing enhanced HER-2 expression.


Asunto(s)
Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Neoplasias Ováricas/genética , Receptor ErbB-2/genética , Secuencia de Bases , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Datos de Secuencia Molecular , Transcripción Genética , Células Tumorales Cultivadas
9.
Ann N Y Acad Sci ; 868: 370-8, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10414306

RESUMEN

SK channels play a fundamental role in all excitable cells. SK channels are potassium selective and are activated by an increase in the level of intracellular calcium, such as occurs during an action potential. Their activation causes membrane hyperpolarization, which inhibits cell firing and limits the firing frequency of repetitive action potentials. The intracellular calcium increase evoked by action potential firing decays slowly, allowing SK channel activation to generate a long-lasting hyperpolarization termed the slow afterhyperpolarization (sAHP). This spike-frequency adaptation protects the cell from the deleterious effects of continuous tetanic activity and is essential for normal neurotransmission. Slow AHPs can be classified into two groups, based on sensitivity to the bee venom toxin apamin. In general, apamin-sensitive sAHPs activate rapidly following a single action potential and decay with a time constant of approximately 150 ms. In contrast, apamin-insensitive sAHPs rise slowly and decay with a time constant of approximately 1.5 s. The basis for this kinetic difference is not yet understood. Apamin-sensitive and apamin-insensitive SK channels have recently been cloned. This chapter will compare with different classes of sAHPs, discuss the cloned SK channels and how they are gated by calcium ions, describe the molecular basis for their different pharmacologies, and review the possible role of SK channels in several pathological conditions.


Asunto(s)
Canales de Potasio Calcio-Activados , Canales de Potasio/metabolismo , Potenciales de Acción/fisiología , Animales , Apamina , Calcio/metabolismo , Clonación Molecular , Humanos , Activación del Canal Iónico , Cinética , Modelos Moleculares , Distrofia Miotónica/genética , Neurotransmisores/farmacología , Canales de Potasio/genética , Trastornos del Sueño-Vigilia/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
10.
Muscle Nerve ; 22(6): 742-50, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10366228

RESUMEN

Skeletal muscle becomes hyperexcitable following denervation and when cultured in the absence of nerve cells. In these circumstances, the bee venom peptide toxin apamin, a blocker of small-conductance calcium-activated potassium (SK) channels, dramatically reduces the hyperexcitability. In this report, we show that SK3 channels are expressed in denervated skeletal muscle and in L6 cells. Action potentials evoked from normal innervated rat skeletal muscle did not exhibit an afterhyperpolarization, indicating a lack of SK channel activity; very low levels of apamin binding sites, SK3 protein, or SK3 mRNA were present. However, denervation resulted in apamin-sensitive afterhyperpolarizations and increased apamin binding sites, SK3 protein, and SK3 mRNA. Cultured rat L6 myoblasts and differentiated L6 myotubes contained similar levels of SK3 mRNA, although apamin-sensitive SK currents and apamin binding sites were detected only following myotube differentiation. Therefore, different molecular mechanisms govern SK3 expression levels in denervated muscle compared with muscle cells differentiated in culture.


Asunto(s)
Calcio/farmacología , Músculo Esquelético/fisiología , Conducción Nerviosa , Canales de Potasio/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Mapeo Cromosómico , Genoma Humano , Humanos , Desnervación Muscular , Ratas , Células Madre/efectos de los fármacos
11.
Nature ; 395(6701): 503-7, 1998 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-9774106

RESUMEN

The slow afterhyperpolarization that follows an action potential is generated by the activation of small-conductance calcium-activated potassium channels (SK channels). The slow afterhyperpolarization limits the firing frequency of repetitive action potentials (spike-frequency adaptation) and is essential for normal neurotransmission. SK channels are voltage-independent and activated by submicromolar concentrations of intracellular calcium. They are high-affinity calcium sensors that transduce fluctuations in intracellular calcium concentrations into changes in membrane potential. Here we study the mechanism of calcium gating and find that SK channels are not gated by calcium binding directly to the channel alpha-subunits. Instead, the functional SK channels are heteromeric complexes with calmodulin, which is constitutively associated with the alpha-subunits in a calcium-independent manner. Our data support a model in which calcium gating of SK channels is mediated by binding of calcium to calmodulin and subsequent conformational alterations in the channel protein.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Canales de Potasio Calcio-Activados , Canales de Potasio/metabolismo , Animales , Sitios de Unión , Calmodulina/genética , Calmodulina/metabolismo , Electrofisiología , Glutatión Transferasa/metabolismo , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Xenopus
13.
Proc Natl Acad Sci U S A ; 94(21): 11651-6, 1997 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-9326665

RESUMEN

An intermediate conductance calcium-activated potassium channel, hIK1, was cloned from human pancreas. The predicted amino acid sequence is related to, but distinct from, the small conductance calcium-activated potassium channel subfamily, which is approximately 50% conserved. hIK1 mRNA was detected in peripheral tissues but not in brain. Expression of hIK1 in Xenopus oocytes gave rise to inwardly rectifying potassium currents, which were activated by submicromolar concentrations of intracellular calcium (K0.5 = 0.3 microM). Although the K0.5 for calcium was similar to that of small conductance calcium-activated potassium channels, the slope factor derived from the Hill equation was significantly reduced (1.7 vs. 3. 5). Single-channel current amplitudes reflected the macroscopic inward rectification and revealed a conductance level of 39 pS in the inward direction. hIK1 currents were reversibly blocked by charybdotoxin (Ki = 2.5 nM) and clotrimazole (Ki = 24.8 nM) but were minimally affected by apamin (100 nM), iberiotoxin (50 nM), or ketoconazole (10 microM). These biophysical and pharmacological properties are consistent with native intermediate conductance calcium-activated potassium channels, including the erythrocyte Gardos channel.


Asunto(s)
Canales de Potasio Calcio-Activados , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Calcio/farmacología , Secuencia Conservada , Femenino , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Sustancias Macromoleculares , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Oocitos/fisiología , Especificidad de Órganos , Canales de Potasio/biosíntesis , Canales de Potasio/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus laevis
14.
Pflugers Arch ; 433(1-2): 77-83, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-9019734

RESUMEN

Activities of strong inward-rectifier K+ channels composed of Kir2. 1(84 M), Kir2.1(84T) and Kir4.1 subunits and weak inward-rectifier K+ channels composed of Kir4.1(E158N) subunits were measured from giant inside-out patches of Xenopus laevis oocytes. The conductance/voltage (g/V) relationship for block by intracellular spermine (SPM) was biphasic for both Kir2.1 channel types while it was monophasic for both Kir4.1 channel types. The release of blocking Mg2+ ions was slow for Kir2.1(84T) but virtually instantaneous for Kir2.1(84M) and both Kir4.1 channel types. Coexpression of Kir2.1(84T) and Kir4.1(E158N) resulted in heterooligomeric channels which were strongly rectifying, with a g/V relationship for SPM-evoked block that was significantly different from that of either parental homooligomeric channel type. Block by intracellular Mg2+ was markedly stronger than that for Kir4.1(E158N) channels, while release of the block was almost instantaneous, similar to that for Kir4.1(E158N) channels. This suggests preferential formation of a particular heterooligomer such as was recently proposed for subunits within the Kir3.0 family.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/fisiología , Animales , Electrofisiología , Femenino , Magnesio/farmacología , Oocitos/metabolismo , Bloqueadores de los Canales de Potasio , Espermina/farmacología , Xenopus laevis
15.
Gen Comp Endocrinol ; 104(1): 7-19, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8921350

RESUMEN

Reproductive maturation and regulation is centrally orchestrated by gonadotropin-releasing hormone (GnRH). GnRH produced in the vertebrate hypothalamus acts on the pituitary to regulate gonadotropins. In nonplacental mammalian species, it has recently been shown that a second GnRH gene is expressed in mesencephalic cells. Here, we report the cDNA sequences and expression patterns for two distinct genes encoding the hypothalamic and mesencephalic GnRH forms in the brain of a placental mammal, the tree shrew (Tupaia glis belangeri). The novel mammalian GnRH form, designated here as [His5Trp7Tyr8]GnRH (often called chicken GnRH II), is expressed in neurons of the mesencephalon and is the first nonhypothalamic form to be isolated from a mammal. Its peptide sequence is identical to the form previously reported in fish, amphibians, reptiles, and birds, revealing that it has remained unchanged for 500 million years. In contrast, the sequences of the hypothalamic GnRH decapeptides vary by as much as 50% across vertebrate species. The remarkable sequence conservation of mesencephalic GnRH suggests that it has been highly constrained throughout evolution, perhaps indicating an important, conserved nongonadotropic role. The discovery and localization of two mRNAs encoding distinct GnRH forms in an advanced mammal suggest that other mammals, including primates, may also have a second GnRH gene with expression localized in the midbrain.


Asunto(s)
Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/genética , Mesencéfalo/metabolismo , Precursores de Proteínas/genética , ARN Mensajero/genética , Tupaiidae/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , ADN Complementario/análisis , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Sondas de Oligonucleótidos/química , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo
16.
Science ; 273(5282): 1709-14, 1996 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-8781233

RESUMEN

Members of a previously unidentified family of potassium channel subunits were cloned from rat and human brain. The messenger RNAs encoding these subunits were widely expressed in brain with distinct yet overlapping patterns, as well as in several peripheral tissues. Expression of the messenger RNAs in Xenopus oocytes resulted in calcium-activated, voltage-independent potassium channels. The channels that formed from the various subunits displayed differential sensitivity to apamin and tubocurare. The distribution, function, and pharmacology of these channels are consistent with the SK class of small-conductance, calcium-activated potassium channels, which contribute to the afterhyperpolarization in central neurons and other cell types.


Asunto(s)
Química Encefálica , Calcio/metabolismo , Neuronas/fisiología , Canales de Potasio Calcio-Activados , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Elementos sin Sentido (Genética) , Apamina/farmacología , Calcio/farmacología , Clonación Molecular , Conductividad Eléctrica , Femenino , Humanos , Potenciales de la Membrana , Datos de Secuencia Molecular , Oocitos , Técnicas de Placa-Clamp , Potasio/metabolismo , Bloqueadores de los Canales de Potasio , Canales de Potasio/análisis , Canales de Potasio/química , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Xenopus
17.
Jpn Heart J ; 37(5): 651-60, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8973378

RESUMEN

A PCR-based cloning strategy was used to identify novel subunits of the two-transmembrane domain inward rectifier potassium channel family from rat brain, heart, and skeletal muscle. When expressed in Xenopus oocytes, two of these clones (Kir4.1 and Kir2.3) gave rise to inwardly rectifying potassium currents. Two-electrode voltage clamp commands to potentials negative to EK evoked inward potassium-selective currents which rapidly reached a peak amplitude and then relaxed to a steady-state level. Differences in the extent of current relaxation, the degree of rectification, and the voltage-dependent block by external cesium were detected. Two other members of this family (Kir5.1 and Kir3.4) did not produce macroscopic currents, when expressed by themselves, yet both subunits modified the currents when coexpressed with other specific members of the Kir family. Expression of chimeric subunits between Kir4.1 and either Kir5.1 or Kir3.4 suggested that the transmembrane domains determine the specificity of subunit heteropolymerization, while the C-terminal domains contribute to alterations in activation kinetics and rectification. Expression of covalently linked subunits demonstrated that the relative subunit positions, as well as stoichiometry, affect heteromeric channel activity.


Asunto(s)
Canales de Potasio/química , Canales de Potasio/fisiología , Animales , Encéfalo/metabolismo , Clonación Molecular , ADN Complementario/biosíntesis , Expresión Génica , Activación del Canal Iónico , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Oocitos , Reacción en Cadena de la Polimerasa , Canales de Potasio/genética , Ratas , Xenopus
18.
EMBO J ; 15(12): 2980-7, 1996 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-8670799

RESUMEN

Kir 4.1 is an inward rectifier potassium channel subunit isolated from rat brain which forms homomeric channels when expressed in Xenopus oocytes; Kir 5.1 is a structurally related subunit which does not. Co-injection of mRNAs encoding Kir 4.1 and Kir 5.1 resulted in potassium currents that (i) were much larger than those seen from expression of Kir 4.1 alone, (ii) increased rather than decreased during several seconds at strongly negative potentials and (iii) had an underlying unitary conductance of 43 pS rather than the 12 pS seen with Kir 4.1 alone. In contrast, the properties of Kir 1.1, 2.1, 2.3, 3.1, 3.2 or 3.4 were not altered by coexpression with Kir 5.1. Expression of a concatenated cDNA encoding two or four linked subunits produced currents with the properties of co-expressed Kir 4.1 and Kir 5.1 when the subunits were connected 4-5 or 4-5-4-5, but not when they were connected 4-4-5-5. The results indicate that Kir 5.1 associates specifically with Kir 4.1 to form heteromeric channels, and suggest that they do so normally in the subunit order 4-5-4-5. Further, the relative order of subunits within the channel contributes to their functional properties.


Asunto(s)
Canales de Potasio/metabolismo , Animales , Potenciales de la Membrana , Canales de Potasio/genética , Canales de Potasio/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Xenopus laevis
19.
J Biol Chem ; 271(10): 5866-70, 1996 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-8621458

RESUMEN

Inwardly rectifying K+ channel subunits may form homomeric or heteromeric channels with distinct functional properties. Hyperpolarizing commands delivered to Xenopus oocytes expressing homomeric Kir 4.1 channels evoke inwardly rectifying K+ currents which activate rapidly and undergo a pronounced decay at more hyperpolarized potentials. In addition, Kir 4.1 subunits form heteromeric channels when coexpressed with several other inward rectifier subunits. However, coexpression of Kir 4.1 with Kir 3.4 causes an inhibition of the Kir 4.1 current. We have investigated this inhibitory effect and show that it is mediated by interactions between the predicted transmembrane domains of the two subunit classes. Other subunits within the Kir 3.0 family also exhibit this inhibitory effect which can be used to define subgroups of the inward rectifier family. Further, the mechanism of inhibition is likely due to the formation of an "inviable complex" which becomes degraded, rather than by formation of stable nonconductive heteromeric channels. These results provide insight into the assembly and regulation of inwardly rectifying K+ channels and the domains which define their interactions.


Asunto(s)
Canales de Potasio/fisiología , Animales , Western Blotting , Membrana Celular/fisiología , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Femenino , Cinética , Sustancias Macromoleculares , Potenciales de la Membrana , Oocitos/fisiología , Reacción en Cadena de la Polimerasa , Bloqueadores de los Canales de Potasio , Canales de Potasio/biosíntesis , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Xenopus laevis
20.
Nature ; 378(6559): 792, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8524415
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...