Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 87(1): 014501, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26827333

RESUMEN

We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the cosmic microwave background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of ±0.1(∘). The system performed well in Spider during its successful 16 day flight.

2.
Phys Rev Lett ; 114(15): 151302, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933304

RESUMEN

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

3.
Phys Rev Lett ; 109(4): 041101, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-23006072

RESUMEN

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.002, and the signal is consistent with the growth of cosmic structure in the standard model of cosmology.

4.
Phys Rev Lett ; 107(2): 021301, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797590

RESUMEN

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

5.
Phys Rev Lett ; 107(2): 021302, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21797591

RESUMEN

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.

6.
Phys Rev Lett ; 103(7): 071301, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19792629

RESUMEN

A new class of non-Gaussian curvature fluctuations zeta(pr)(x) identical with deltaN(chi(i)) arises from the postinflation preheating behavior of a noninflaton field chi(i). Its billiardlike chaotic dynamics imprints regular log-spaced narrow spikes in the number of preheating e-folds N(chi(i)). We perform highly accurate lattice simulations of supersymmetry-inspired quartic inflaton and coupling potentials in a separate-universe approximation to compute N(chi(i)) as a function of the (nearly homogeneous) initial condition chi(i). The superhorizon modes of chi(i)(x) result in positive spiky excursions in zeta(pr) and hence negative gravitational potential fluctuations added to the usual sign-independent inflaton-induced perturbations, observably manifested in large cosmic structures and as (polarized) temperature cosmic microwave background cold spots.

7.
Philos Trans A Math Phys Eng Sci ; 361(1812): 2435-67, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-14667311

RESUMEN

We highlight the remarkable evolution in the cosmic microwave background (CMB) power spectrum C(l) as a function of multipole l over the past few years, and in the cosmological parameters for minimal inflation models derived from it: from anisotropy results before 2000; in 2000 and 2001 from Boomerang, Maxima and the Degree Angular Scale Interferometer (DASI), extending l to approximately 1000; and in 2002 from the Cosmic Background Imager (CBI), Very Small Array (VSA), ARCHEOPS and Arcminute Cosmology Bolometer Array Receiver (ACBAR), extending l to approximately 3000, with more from Boomerang and DASI as well. Pre-WMAP (pre-Wilkinson Microwave Anisotropy Probe) optimal band powers are in good agreement with each other and with the exquisite one-year WMAP results, unveiled in February 2003, which now dominate the l less, similar 600 bands. These CMB experiments significantly increased the case for accelerated expansion in the early Universe (the inflationary paradigm) and at the current epoch (dark energy dominance) when they were combined with "prior" probabilities on the parameters. The minimal inflation parameter set, [omega(b), omega(cdm), Omega(tot), Omega(Lambda), n(s), tau(C), sigma(8)], is applied in the same way to the evolving data. C(l) database and Monte Carlo Markov Chain (MCMC) methods are shown to give similar values, which are highly stable over time and for different prior choices, with the increasing precision best characterized by decreasing errors on uncorrelated "parameter eigenmodes". Priors applied range from weak ones to stronger constraints from the expansion rate (HST-h), from cosmic acceleration from supernovae (SN1) and from galaxy clustering, gravitational lensing and local cluster abundance (LSS). After marginalizing over the other cosmic and experimental variables for the weak + LSS prior, the pre-WMAP data of January 2003 compared with the post-WMAP data of March 2003 give Omega(tot) = 1.03(-0.04)(+0.05) compared with 1.02(-0.03)(+0.04), consistent with (non-Baroque) inflation theory. Adding the flat Omega(tot) = 1 prior, we find a nearly scale-invariant spectrum, n(s) = 0.95(-0.04)(+0.07) compared with 0.97(-0.02)(+0.02). The evidence for a logarithmic variation of the spectral tilt is less than or approximately 2sigma. The densities are for: baryons, omega(b) identical with Omega(b)h(2) = 0.0217(-0.002)(+0.002) (compared with 0.0228(-0.001)(+0.001)), near the Big Bang nucleosynthesis (BBN) estimate of 0.0214 +/- 0.002; CDM, omega(cdm) = Omega(cdm)h(2) = 0.126(-0.012)(+0.012) (compared with 0.121(-0.010)(+0.010)); the substantial dark (unclustered) energy, Omega(Lambda) approximately 0.66(-0.09)(+0.07) (compared with 0.70(-0.05)(+0.05)). The dark energy pressure-to-density ratio w(Q) is not well constrained by our weak + LSS prior, but adding SN1 gives w(Q) less than or approximately -0.7 for January 2003 and March 2003, consistent with the w(Q) = -1 cosmological constant case. We find sigma(8) = 0.89(-0.07)(+0.06) (compared with 0.86(-0.04)(+0.04)), implying a sizable Sunyaev-Zel'dovich (SZ) effect from clusters and groups; the high-l power found in the January 2003 data suggest sigma(8) approximately 0.94(-0.16)(+0.08) is needed to be SZ-compatible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...