Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Hematol Blood Transfus ; 37(1): 101-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33707842

RESUMEN

Dabigatran etexilate is an oral direct thrombin (Factor IIa) inhibitor approved for patients with atrial fibrillation and for management of risk of deep vein thrombosis and pulmonary embolism. Dabigatran offers advantages over treatment with warfarin, including limited laboratory monitoring. It is equivalent in prevention of stroke and deep vein thrombosis with essentially equivalent complication rates. In contrast to warfarin, reversal of the anticoagulation is less well established. Idarucizumab is available for reversal, however supporting research is mixed; the agent also happens to be quite expensive making availability difficult. Hemodialysis has been proposed as a method of reversal, but this is difficult in patients with life threatening hemorrhage, and is not available at many hospitals. Intravenous fat emulsion (IFE) has been used for treatment of overdose of lipophilic drugs. Most toxicologists only recommend IFE for patients in extremis after ingestion of a lipid soluble substance. Dabigatran is lipid soluble, although the pro-drug more so than the active metabolite. The authors sought to see if dabigatran-induced coagulopathy of human in vitro blood samples could be reversed with IFE. Blood samples were spiked with dabigatran or dabigatran plus IFE. Values for Ecarin clot time (ECT-primary outcome), PT/INR, and aPTT, were compared across both study arms. A total of 18 healthy volunteers were included in our study. There were no significant differences in the ECT, PT/INR, and aPTT between the dabigatran arm and the dabigatran plus IFE arm. Based on these methods, IFE does not reverse dabigatran-induced coagulopathy.

2.
Microb Cell ; 2(12): 466-480, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-28357272

RESUMEN

Yeasts provide an excellent genetically tractable eukaryotic system for investigating the function of genes in their biological context, and are especially relevant for those conserved genes that cause disease. We study the role of btn1, the orthologue of a human gene that underlies an early onset neurodegenerative disease (juvenile CLN3 disease, neuronal ceroid lipofuscinosis (NCLs) or Batten disease) in the fission yeast Schizosaccharomyces pombe. A global screen for genetic interactions with btn1 highlighted a conserved key signalling hub in which multiple components functionally relate to this conserved disease gene. This signalling hub includes two major mitogen-activated protein kinase (MAPK) cascades, and centers on the Tor kinase complexes TORC1 and TORC2. We confirmed that yeast cells modelling CLN3 disease exhibit features consistent with dysfunction in the TORC pathways, and showed that modulating TORC function leads to a comprehensive rescue of defects in this yeast disease model. The same pathways may be novel targets in the development of therapies for the NCLs and related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...