Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
PLOS Glob Public Health ; 4(3): e0002888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470906

RESUMEN

Despite widespread adoption of community health (CH) systems, there are evidence gaps to support global best practice in remote settings where access to health care is limited and community health workers (CHWs) may be the only available providers. The nongovernmental health organization Pivot partnered with the Ministry of Public Health (MoPH) to pilot a new enhanced community health (ECH) model in rural Madagascar, where one CHW provided care at a stationary CH site while additional CHWs provided care via proactive household visits. The program included professionalization of the CHW workforce (i.e., targeted recruitment, extended training, financial compensation) and twice monthly supervision of CHWs. For the first eighteen months of implementation (October 2019-March 2021), we compared utilization and proxy measures of quality of care in the intervention commune (local administrative unit) and five comparison communes with strengthened community health programs under a different model. This allowed for a quasi-experimental study design of the impact of ECH on health outcomes using routinely collected programmatic data. Despite the substantial support provided to other CHWs, the results show statistically significant improvements in nearly every indicator. Sick child visits increased by more than 269.0% in the intervention following ECH implementation. Average per capita monthly under-five visits were 0.25 in the intervention commune and 0.19 in the comparison communes (p<0.01). In the intervention commune, 40.3% of visits were completed at the household via proactive care. CHWs completed all steps of the iCCM protocol in 85.4% of observed visits in the intervention commune (vs 57.7% in the comparison communes, p-value<0.01). This evaluation demonstrates that ECH can improve care access and the quality of service delivery in a rural health district. Further research is needed to assess the generalizability of results and the feasibility of national scale-up as the MoPH continues to define the national community health program.

2.
Sci Rep ; 13(1): 21288, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042891

RESUMEN

Data on population health are vital to evidence-based decision making but are rarely adequately localized or updated in continuous time. They also suffer from low ascertainment rates, particularly in rural areas where barriers to healthcare can cause infrequent touch points with the health system. Here, we demonstrate a novel statistical method to estimate the incidence of endemic diseases at the community level from passive surveillance data collected at primary health centers. The zero-corrected, gravity-model (ZERO-G) estimator explicitly models sampling intensity as a function of health facility characteristics and statistically accounts for extremely low rates of ascertainment. The result is a standardized, real-time estimate of disease incidence at a spatial resolution nearly ten times finer than typically reported by facility-based passive surveillance systems. We assessed the robustness of this method by applying it to a case study of field-collected malaria incidence rates from a rural health district in southeastern Madagascar. The ZERO-G estimator decreased geographic and financial bias in the dataset by over 90% and doubled the agreement rate between spatial patterns in malaria incidence and incidence estimates derived from prevalence surveys. The ZERO-G estimator is a promising method for adjusting passive surveillance data of common, endemic diseases, increasing the availability of continuously updated, high quality surveillance datasets at the community scale.


Asunto(s)
Enfermedades Endémicas , Malaria , Humanos , Malaria/epidemiología , Aceptación de la Atención de Salud , Madagascar , Incidencia
3.
Int J Epidemiol ; 52(6): 1745-1755, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37793001

RESUMEN

INTRODUCTION: Three years into the pandemic, there remains significant uncertainty about the true infection and mortality burden of COVID-19 in the World Health Organization Africa region. High quality, population-representative studies in Africa are rare and tend to be conducted in national capitals or large cities, leaving a substantial gap in our understanding of the impact of COVID-19 in rural, low-resource settings. Here, we estimated the spatio-temporal morbidity and mortality burden associated with COVID-19 in a rural health district of Madagascar until the first half of 2021. METHODS: We integrated a nested seroprevalence study within a pre-existing longitudinal cohort conducted in a representative sample of 1600 households in Ifanadiana District, Madagascar. Socio-demographic and health information was collected in combination with dried blood spots for about 6500 individuals of all ages, which were analysed to detect IgG and IgM antibodies against four specific proteins of SARS-CoV-2 in a bead-based multiplex immunoassay. We evaluated spatio-temporal patterns in COVID-19 infection history and its associations with several geographic, socio-economic and demographic factors via logistic regressions. RESULTS: Eighteen percent of people had been infected by April-June 2021, with seroprevalence increasing with individuals' age. COVID-19 primarily spread along the only paved road and in major towns during the first epidemic wave, subsequently spreading along secondary roads during the second wave to more remote areas. Wealthier individuals and those with occupations such as commerce and formal employment were at higher risk of being infected in the first wave. Adult mortality increased in 2020, particularly for older men for whom it nearly doubled up to nearly 40 deaths per 1000. Less than 10% of mortality in this period would be directly attributed to COVID-19 deaths if known infection fatality ratios are applied to observed seroprevalence in the district. CONCLUSION: Our study provides a very granular understanding on COVID-19 transmission and mortality in a rural population of sub-Saharan Africa and suggests that the disease burden in these areas may have been substantially underestimated.


Asunto(s)
COVID-19 , Adulto , Masculino , Humanos , Anciano , Estudios Seroepidemiológicos , SARS-CoV-2 , Madagascar/epidemiología , Población Rural , Morbilidad , Pandemias , Anticuerpos Antivirales
4.
PLOS Glob Public Health ; 3(2): e0001607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963091

RESUMEN

While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data. Specifically, this study integrates climate, land-use, and representative household survey data to explain and predict malaria dynamics at a high spatial resolution (i.e., by Fokontany, a cluster of villages) relevant to health care practitioners. Combining generalized linear mixed models (GLMM) and path analyses, we found that socio-economic, land use and climatic variables are all important predictors of monthly malaria incidence at fine spatial scales, via both direct and indirect effects. In addition, out-of-sample predictions from our model were able to identify 58% of the Fokontany in the top quintile for malaria incidence and account for 77% of the variation in the Fokontany incidence rank. These results suggest that it is possible to build a predictive framework using environmental and social predictors that can be complementary to standard surveillance systems and help inform control strategies by field actors at local scales.

5.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823026

RESUMEN

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Asunto(s)
Enfermedades Transmisibles Emergentes , Zoonosis , Animales , Humanos , Zoonosis/epidemiología , Pandemias , Animales Salvajes , Animales Domésticos , Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades
7.
Lancet Planet Health ; 6(11): e870-e879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370725

RESUMEN

BACKGROUND: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS: We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION: The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Carga Global de Enfermedades , Humanos , Enfermedades Transmisibles/epidemiología , Salud Global , Factores Socioeconómicos , Estados Unidos
8.
Lancet Planet Health ; 6(8): e694-e705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35932789

RESUMEN

As sustainable development practitioners have worked to "ensure healthy lives and promote well-being for all" and "conserve life on land and below water", what progress has been made with win-win interventions that reduce human infectious disease burdens while advancing conservation goals? Using a systematic literature review, we identified 46 proposed solutions, which we then investigated individually using targeted literature reviews. The proposed solutions addressed diverse conservation threats and human infectious diseases, and thus, the proposed interventions varied in scale, costs, and impacts. Some potential solutions had medium-quality to high-quality evidence for previous success in achieving proposed impacts in one or both sectors. However, there were notable evidence gaps within and among solutions, highlighting opportunities for further research and adaptive implementation. Stakeholders seeking win-win interventions can explore this Review and an online database to find and tailor a relevant solution or brainstorm new solutions.


Asunto(s)
Control de Enfermedades Transmisibles , Desarrollo Sostenible , Humanos
9.
BMJ Glob Health ; 7(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012969

RESUMEN

BACKGROUND: To reach global immunisation goals, national programmes need to balance routine immunisation at health facilities with vaccination campaigns and other outreach activities (eg, vaccination weeks), which boost coverage at particular times and help reduce geographical inequalities. However, where routine immunisation is weak, an over-reliance on vaccination campaigns may lead to heterogeneous coverage. Here, we assessed the impact of a health system strengthening (HSS) intervention on the relative contribution of routine immunisation and outreach activities to reach immunisation goals in rural Madagascar. METHODS: We obtained data from health centres in Ifanadiana district on the monthly number of recommended vaccines (BCG, measles, diphtheria, tetanus and pertussis (DTP) and polio) delivered to children, during 2014-2018. We also analysed data from a district-representative cohort carried out every 2 years in over 1500 households in 2014-2018. We compared changes inside and outside the HSS catchment in the delivery of recommended vaccines, population-level vaccination coverage, geographical and economic inequalities in coverage, and timeliness of vaccination. The impact of HSS was quantified via mixed-effects logistic regressions. RESULTS: The HSS intervention was associated with a significant increase in immunisation rates (OR between 1.22 for measles and 1.49 for DTP), which diminished over time. Outreach activities were associated with a doubling in immunisation rates, but their effect was smaller in the HSS catchment. Analysis of cohort data revealed that HSS was associated with higher vaccination coverage (OR between 1.18 per year of HSS for measles and 1.43 for BCG), a reduction in economic inequality, and a higher proportion of timely vaccinations. Yet, the lower contribution of outreach activities in the HSS catchment was associated with persistent inequalities in geographical coverage, which prevented achieving international coverage targets. CONCLUSION: Investment in stronger primary care systems can improve vaccination coverage, reduce inequalities and improve the timeliness of vaccination via increases in routine immunisations.


Asunto(s)
Población Rural , Cobertura de Vacunación , Niño , Humanos , Inmunización , Madagascar , Vacunación
10.
PLOS Glob Public Health ; 2(12): e0001028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962826

RESUMEN

Geographic distance is a critical barrier to healthcare access, particularly for rural communities with poor transportation infrastructure who rely on non-motorized transportation. There is broad consensus on the importance of community health workers (CHWs) to reduce the effects of geographic isolation on healthcare access. Due to a lack of fine-scale spatial data and individual patient records, little is known about the precise effects of CHWs on removing geographic barriers at this level of the healthcare system. Relying on a high-quality, crowd-sourced dataset that includes all paths and buildings in the area, we explored the impact of geographic distance from CHWs on the use of CHW services for children under 5 years in the rural district of Ifanadiana, southeastern Madagascar from 2018-2021. We then used this analysis to determine key features of an optimal geographic design of the CHW system, specifically optimizing a single CHW location or installing additional CHW sites. We found that consultation rates by CHWs decreased with increasing distance patients travel to the CHW by approximately 28.1% per km. The optimization exercise revealed that the majority of CHW sites (50/80) were already in an optimal location or shared an optimal location with a primary health clinic. Relocating the remaining CHW sites based on a geographic optimum was predicted to increase consultation rates by only 7.4%. On the other hand, adding a second CHW site was predicted to increase consultation rates by 31.5%, with a larger effect in more geographically dispersed catchments. Geographic distance remains a barrier at the level of the CHW, but optimizing CHW site location based on geography alone will not result in large gains in consultation rates. Rather, alternative strategies, such as the creation of additional CHW sites or the implementation of proactive care, should be considered.

11.
BMJ Glob Health ; 6(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880062

RESUMEN

BACKGROUND: The provision of emergency and hospital care has become an integral part of the global vision for universal health coverage. To strengthen secondary care systems, we need to accurately understand the time necessary for populations to reach a hospital. The goal of this study was to develop methods that accurately estimate referral and prehospital time for rural districts in low and middle-income countries. We used these estimates to assess how local geography can limit the impact of a strengthened referral programme in a rural district of Madagascar. METHODS: We developed a database containing: travel speed by foot and motorised vehicles in Ifanadiana district; a full mapping of all roads, footpaths and households; and remotely sensed data on terrain, land cover and climatic characteristics. We used this information to calibrate estimates of referral and prehospital time based on the shortest route algorithms and statistical models of local travel speed. We predict the impact on referral numbers of strategies aimed at reducing referral time for underserved populations via generalised linear mixed models. RESULTS: About 10% of the population lived less than 2 hours from the hospital, and more than half lived over 4 hours away, with variable access depending on climatic conditions. Only the four health centres located near the paved road had referral times to the hospital within 1 hour. Referral time remained the main barrier limiting the number of referrals despite health system strengthening efforts. The addition of two new referral centres is estimated to triple the population living within 2 hours from a centre with better emergency care capacity and nearly double the number of expected referrals. CONCLUSION: This study demonstrates how adapting geographic accessibility modelling methods to local scales can occur through improving the precision of travel time estimates and pairing them with data on health facility use.


Asunto(s)
Derivación y Consulta , Población Rural , Humanos , Madagascar , Viaje , Cobertura Universal del Seguro de Salud
12.
R Soc Open Sci ; 8(9): 210699, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34527275

RESUMEN

Dynamic models are used to assess the impact of three types of face masks (cloth masks, surgical/procedure masks and respirators) in controlling the COVID-19 pandemic in the USA. We showed that the pandemic would have failed to establish in the USA if a nationwide mask mandate, based on using respirators with moderately high compliance, had been implemented during the first two months of the pandemic. The other mask types would fail to prevent the pandemic from becoming established. When mask usage compliance is low to moderate, respirators are far more effective in reducing disease burden. Using data from the third wave, we showed that the epidemic could be eliminated in the USA if at least 40% of the population consistently wore respirators in public. Surgical masks can also lead to elimination, but requires compliance of at least 55%. Daily COVID-19 mortality could be eliminated in the USA by June or July 2021 if 95% of the population opted for either respirators or surgical masks from the beginning of the third wave. We showed that the prospect of effective control or elimination of the pandemic using mask-based strategy is greatly enhanced if combined with other non-pharmaceutical interventions (NPIs) that significantly reduce the baseline community transmission. By slightly modifying the model to include the effect of a vaccine against COVID-19 and waning vaccine-derived and natural immunity, this study shows that the waning of such immunity could trigger multiple new waves of the pandemic in the USA. The number, severity and duration of the projected waves depend on the quality of mask type used and the level of increase in the baseline levels of other NPIs used in the community during the onset of the third wave of the pandemic in the USA. Specifically, no severe fourth or subsequent wave of the pandemic will be recorded in the USA if surgical masks or respirators are used, particularly if the mask use strategy is combined with an increase in the baseline levels of other NPIs. This study further emphasizes the role of human behaviour towards masking on COVID-19 burden, and highlights the urgent need to maintain a healthy stockpile of highly effective respiratory protection, particularly respirators, to be made available to the general public in times of future outbreaks or pandemics of respiratory diseases that inflict severe public health and socio-economic burden on the population.

13.
Front Public Health ; 9: 654299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368043

RESUMEN

There are many outstanding questions about how to control the global COVID-19 pandemic. The information void has been especially stark in the World Health Organization Africa Region, which has low per capita reported cases, low testing rates, low access to therapeutic drugs, and has the longest wait for vaccines. As with all disease, the central challenge in responding to COVID-19 is that it requires integrating complex health systems that incorporate prevention, testing, front line health care, and reliable data to inform policies and their implementation within a relevant timeframe. It requires that the population can rely on the health system, and decision-makers can rely on the data. To understand the process and challenges of such an integrated response in an under-resourced rural African setting, we present the COVID-19 strategy in Ifanadiana District, where a partnership between Malagasy Ministry of Public Health (MoPH) and non-governmental organizations integrates prevention, diagnosis, surveillance, and treatment, in the context of a model health system. These efforts touch every level of the health system in the district-community, primary care centers, hospital-including the establishment of the only RT-PCR lab for SARS-CoV-2 testing outside of the capital. Starting in March of 2021, a second wave of COVID-19 occurred in Madagascar, but there remain fewer cases in Ifanadiana than for many other diseases (e.g., malaria). At the Ifanadiana District Hospital, there have been two deaths that are officially attributed to COVID-19. Here, we describe the main components and challenges of this integrated response, the broad epidemiological contours of the epidemic, and how complex data sources can be developed to address many questions of COVID-19 science. Because of data limitations, it still remains unclear how this epidemic will affect rural areas of Madagascar and other developing countries where health system utilization is relatively low and there is limited capacity to diagnose and treat COVID-19 patients. Widespread population based seroprevalence studies are being implemented in Ifanadiana to inform the COVID-19 response strategy as health systems must simultaneously manage perennial and endemic disease threats.


Asunto(s)
COVID-19 , Prueba de COVID-19 , Humanos , Madagascar/epidemiología , Pandemias , SARS-CoV-2 , Estudios Seroepidemiológicos
14.
Health Policy Plan ; 36(10): 1659-1670, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331066

RESUMEN

Poor geographic access can persist even when affordable and well-functioning health systems are in place, limiting efforts for universal health coverage (UHC). It is unclear how to balance support for health facilities and community health workers in UHC national strategies. The goal of this study was to evaluate how a health system strengthening (HSS) intervention aimed towards UHC affected the geographic access to primary care in a rural district of Madagascar. For this, we collected the fokontany of residence (lowest administrative unit) from nearly 300 000 outpatient consultations occurring in facilities of Ifanadiana district in 2014-2017 and in the subset of community sites supported by the HSS intervention. Distance from patients to facilities was accurately estimated following a full mapping of the district's footpaths and residential areas. We modelled per capita utilization for each fokontany through interrupted time-series analyses with control groups, accounting for non-linear relationships with distance and travel time among other factors, and we predicted facility utilization across the district under a scenario with and without HSS. Finally, we compared geographic trends in primary care when combining utilization at health facilities and community sites. We find that facility-based interventions similar to those in UHC strategies achieved high utilization rates of 1-3 consultations per person year only among populations living in close proximity to facilities. We predict that scaling only facility-based HSS programmes would result in large gaps in access, with over 75% of the population unable to reach one consultation per person year. Community health delivery, available only for children under 5 years, provided major improvements in service utilization regardless of their distance from facilities, contributing to 90% of primary care consultations in remote populations. Our results reveal the geographic limits of current UHC strategies and highlight the need to invest on professionalized community health programmes with larger scopes of service.


Asunto(s)
Población Rural , Cobertura Universal del Seguro de Salud , Niño , Preescolar , Instituciones de Salud , Accesibilidad a los Servicios de Salud , Humanos , Madagascar , Atención Primaria de Salud
15.
J R Soc Interface ; 18(178): 20210165, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947225

RESUMEN

When a rare pathogen emerges to cause a pandemic, it is critical to understand its dynamics and the impact of mitigation measures. We use experimental data to parametrize a temperature-dependent model of Zika virus (ZIKV) transmission dynamics and analyse the effects of temperature variability and control-related parameters on the basic reproduction number (R0) and the final epidemic size of ZIKV. Sensitivity analyses show that these two metrics are largely driven by different parameters, with the exception of temperature, which is the dominant driver of epidemic dynamics in the models. Our R0 estimate has a single optimum temperature (≈30°C), comparable to other published results (≈29°C). However, the final epidemic size is maximized across a wider temperature range, from 24 to 36°C. The models indicate that ZIKV is highly sensitive to seasonal temperature variation. For example, although the model predicts that ZIKV transmission cannot occur at a constant temperature below 23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model predicts substantial epidemics for areas with a mean temperature of 20°C if there is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida). This suggests that the geographical range of ZIKV is wider than indicated from static R0 models, underscoring the importance of climate dynamics and variation in the context of broader climate change on emerging infectious diseases.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Brasil , Florida , Humanos , Mosquitos Vectores , Temperatura , Infección por el Virus Zika/epidemiología
16.
Proc Biol Sci ; 288(1946): 20202501, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653145

RESUMEN

Precision health mapping is a technique that uses spatial relationships between socio-ecological variables and disease to map the spatial distribution of disease, particularly for diseases with strong environmental signatures, such as diarrhoeal disease (DD). While some studies use GPS-tagged location data, other precision health mapping efforts rely heavily on data collected at coarse-spatial scales and may not produce operationally relevant predictions at fine enough spatio-temporal scales to inform local health programmes. We use two fine-scale health datasets collected in a rural district of Madagascar to identify socio-ecological covariates associated with childhood DD. We constructed generalized linear mixed models including socio-demographic, climatic and landcover variables and estimated variable importance via multi-model inference. We find that socio-demographic variables, and not environmental variables, are strong predictors of the spatial distribution of disease risk at both individual and commune-level (cluster of villages) spatial scales. Climatic variables predicted strong seasonality in DD, with the highest incidence in colder, drier months, but did not explain spatial patterns. Interestingly, the occurrence of a national holiday was highly predictive of increased DD incidence, highlighting the need for including cultural factors in modelling efforts. Our findings suggest that precision health mapping efforts that do not include socio-demographic covariates may have reduced explanatory power at the local scale. More research is needed to better define the set of conditions under which the application of precision health mapping can be operationally useful to local public health professionals.


Asunto(s)
Diarrea , Niño , Diarrea/epidemiología , Humanos , Incidencia , Modelos Lineales , Madagascar/epidemiología , Factores de Riesgo
17.
Int J Health Geogr ; 20(1): 8, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579294

RESUMEN

BACKGROUND: Reliable surveillance systems are essential for identifying disease outbreaks and allocating resources to ensure universal access to diagnostics and treatment for endemic diseases. Yet, most countries with high disease burdens rely entirely on facility-based passive surveillance systems, which miss the vast majority of cases in rural settings with low access to health care. This is especially true for malaria, for which the World Health Organization estimates that routine surveillance detects only 14% of global cases. The goal of this study was to develop a novel method to obtain accurate estimates of disease spatio-temporal incidence at very local scales from routine passive surveillance, less biased by populations' financial and geographic access to care. METHODS: We use a geographically explicit dataset with residences of the 73,022 malaria cases confirmed at health centers in the Ifanadiana District in Madagascar from 2014 to 2017. Malaria incidence was adjusted to account for underreporting due to stock-outs of rapid diagnostic tests and variable access to healthcare. A benchmark multiplier was combined with a health care utilization index obtained from statistical models of non-malaria patients. Variations to the multiplier and several strategies for pooling neighboring communities together were explored to allow for fine-tuning of the final estimates. Separate analyses were carried out for individuals of all ages and for children under five. Cross-validation criteria were developed based on overall incidence, trends in financial and geographical access to health care, and consistency with geographic distribution in a district-representative cohort. The most plausible sets of estimates were then identified based on these criteria. RESULTS: Passive surveillance was estimated to have missed about 4 in every 5 malaria cases among all individuals and 2 out of every 3 cases among children under five. Adjusted malaria estimates were less biased by differences in populations' financial and geographic access to care. Average adjusted monthly malaria incidence was nearly four times higher during the high transmission season than during the low transmission season. By gathering patient-level data and removing systematic biases in the dataset, the spatial resolution of passive malaria surveillance was improved over ten-fold. Geographic distribution in the adjusted dataset revealed high transmission clusters in low elevation areas in the northeast and southeast of the district that were stable across seasons and transmission years. CONCLUSIONS: Understanding local disease dynamics from routine passive surveillance data can be a key step towards achieving universal access to diagnostics and treatment. Methods presented here could be scaled-up thanks to the increasing availability of e-health disease surveillance platforms for malaria and other diseases across the developing world.


Asunto(s)
Sistemas de Información en Salud , Malaria , Niño , Accesibilidad a los Servicios de Salud , Humanos , Incidencia , Malaria/diagnóstico , Malaria/epidemiología , Estaciones del Año
19.
PLoS Comput Biol ; 17(2): e1008639, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33566839

RESUMEN

Epidemics may pose a significant dilemma for governments and individuals. The personal or public health consequences of inaction may be catastrophic; but the economic consequences of drastic response may likewise be catastrophic. In the face of these trade-offs, governments and individuals must therefore strike a balance between the economic and personal health costs of reducing social contacts and the public health costs of neglecting to do so. As risk of infection increases, potentially infectious contact between people is deliberately reduced either individually or by decree. This must be balanced against the social and economic costs of having fewer people in contact, and therefore active in the labor force or enrolled in school. Although the importance of adaptive social contact on epidemic outcomes has become increasingly recognized, the most important properties of coupled human-natural epidemic systems are still not well understood. We develop a theoretical model for adaptive, optimal control of the effective social contact rate using traditional epidemic modeling tools and a utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for any epidemic in which adaptive behavior influences infectious disease dynamics include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Salud Pública , Conducta Social , Simulación por Computador , Trazado de Contacto , Susceptibilidad a Enfermedades , Epidemias , Humanos , Modelos Biológicos , Oscilometría , Riesgo
20.
Glob Chang Biol ; 27(1): 84-93, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33037740

RESUMEN

In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Europa (Continente) , Humanos , Mosquitos Vectores , América del Norte , Temperatura , Infección por el Virus Zika/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...