Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Methods ; 336: 108602, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31981569

RESUMEN

BACKGROUND: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation. This paper presents the design and fabrication of CASE with ex vivo and in vivo testing towards chronic application. METHODS: Electroplating on electrode sites was performed to improve electrical properties of CASE. The surface morphology and chemical compound were characterized using scanning electron microscopy and energy-dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy and cyclic voltammetry were performed to evaluate the electrical properties of CASE and determine viability for in vivo applications. Terminal CASE implantations were performed in a rat sciatic transection model to test the ease of implantation and capacity to write sensory information into the biological system. RESULTS: The modified platinum film resulted in reducing impedance magnitude (9.18 kΩ and 2.27 kΩ) and increasing phase angle (over 70°). CASE stimulation of the sciatic nerve at different amplitudes elicited significantly different cortical responses (p < 0.005) as demonstrated by somatosensory evoked potentials, recorded via micro-electrocorticography. CONCLUSIONS: The ability to elicit cortical responses from sciatic nerve stimulation demonstrates the proof of concept for both the implantation and chronic monitoring of CASE interfaces for innovative prosthetic control.


Asunto(s)
Miembros Artificiales , Prótesis Neurales , Animales , Impedancia Eléctrica , Estimulación Eléctrica , Electrodos , Electrodos Implantados , Nervios Periféricos , Ratas
2.
ACS Biomater Sci Eng ; 6(5): 2652-2658, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33463304

RESUMEN

Implantable cardiac monitors have undergone considerable miniaturization. However, they continue to be associated with complications such as infection, bleeding/bruising, and device extrusion or migration. In this paper, we demonstrate the feasibility of using a small, flexible, injectable, subcutaneous microelectrode-based device to record electrocardiograms (ECGs). We describe the fabrication process and demonstrate the ease of insertion of the injectable ECG device in vivo swine model. We also demonstrate our device's high-density channel microelectrode array's ability to detect the P, R, and T waves. The amplitude of these waves showed excellent correlation with distance of the bipolar electrodes used to detect them. Given the success of our initial studies, this device has the potential to improve the safety profile of implantable cardiac monitors and simplify the implantation procedure to allow for placement in a primary care setting.


Asunto(s)
Electrocardiografía , Tejido Subcutáneo , Animales , Diseño de Equipo , Microelectrodos , Porcinos , Tecnología
3.
Biosens Bioelectron ; 142: 111493, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31319324

RESUMEN

The trigeminal nerve (cranial nerve V), along with other cranial nerves, has in recent years become a popular target for bioelectric medicine due to its direct access to neuromodulatory centers. Trigeminal nerve stimulation is currently being evaluated as an adjunctive treatment for various neurodegenerative and neuropsychiatric diseases despite the mechanism of action being in question. In this work, we describe the development and validation of a novel neural interface for the infraorbital branch of the trigeminal nerve utilizing a thin film (TF) nerve cuff containing multiple electrode sites allowing for more selective stimulation of the nerve. We characterized the properties of the device using electrochemical impedance spectroscopy, cyclic voltammetry, voltage excursions, and in vivo testing. Electrochemical measurements demonstrate that the platinum-based electrodes possess a capacitive charge carrying mechanism suitable for stimulation of biological tissue with a safe charge injection limit of 73.13 µC/cm2. In vivo stimulation experiments show that the TF cuff can reliably stimulate nerve targets eliciting cortical responses similar to a silicone cuff electrode. Furthermore, selecting different pairs of stimulation electrodes on the TF cuff modulated the magnitude and/or spatial pattern of cortical responses suggesting that the device may be able to selectively stimulate different parts of the nerve. These results suggest that the TF cuff is a viable neural interface for stimulation of the infraorbital branch of the trigeminal nerve that enables future research examining the therapeutic mechanisms of trigeminal nerve stimulation.


Asunto(s)
Terapia por Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/instrumentación , Nervio Trigémino/fisiología , Animales , Electrodos Implantados , Diseño de Equipo , Potenciales Evocados Somatosensoriales , Femenino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/terapia
4.
Sci Rep ; 8(1): 13194, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181589

RESUMEN

Dielectrophoresis using multi-electrode arrays allows a non-invasive interface with biological cells for long-term monitoring of electrophysiological parameters as well as a label-free and non-destructive technique for neuronal cell manipulation. However, experiments for neuronal cell manipulation utilizing dielectrophoresis have been constrained because dielectrophoresis devices generally function outside of the controlled environment (i.e. incubator) during the cell manipulation process, which is problematic because neurons are highly susceptible to the properties of the physiochemical environment. Furthermore, the conventional multi-electrode arrays designed to generate dielectrophoretic force are often fabricated with non-transparent materials that confound live-cell imaging. Here we present an advanced single-neuronal cell culture and monitoring platform using a fully transparent microfluidic dielectrophoresis device for the unabated monitoring of neuronal cell development and function. The device is mounted inside a sealed incubation chamber to ensure improved homeostatic conditions and reduced contamination risk. Consequently, we successfully trap and culture single neurons on a desired location and monitor their growth process over a week. The proposed single-neuronal cell culture and monitoring platform not only has significant potential to realize an in vitro ordered neuronal network, but also offers a useful tool for a wide range of neurological research and electrophysiological studies of neuronal networks.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Dispositivos Laboratorio en un Chip , Neuronas/citología , Análisis de la Célula Individual/instrumentación , Animales , Células Cultivadas , Diseño de Equipo , Técnicas Analíticas Microfluídicas/instrumentación , Imagen Óptica/instrumentación , Ratas Sprague-Dawley
5.
ACS Nano ; 12(7): 6748-6755, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29847725

RESUMEN

Surface antireflection micro and nanostructures, normally formed by conventional reactive ion etching, offer advantages in photovoltaic and optoelectronic applications, including wider spectral wavelength ranges and acceptance angles. One challenge in incorporating these structures into devices is that optimal optical properties do not always translate into electrical performance due to surface damage, which significantly increases surface recombination. Here, we present a simple approach for fabricating antireflection structures, with self-passivated amorphous Ge (α-Ge) surfaces, on single crystalline Ge (c-Ge) surface using the inverse metal-assisted chemical etching technology (I-MacEtch). Vertical Schottky Ge photodiodes fabricated with surface structures involving arrays of pyramids or periodic nano-indentations show clear improvements not only in responsivity, due to enhanced optical absorption, but also in dark current. The dark current reduction is attributed to the Schottky barrier height increase and self-passivation effect of the i-MacEtch induced α-Ge layer formed on top of the c-Ge surface. The results demonstrated in this work show that MacEtch can be a viable technology for advanced light trapping and surface engineering in Ge and other semiconductor based optoelectronic devices.

6.
ACS Nano ; 12(1): 148-157, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29253337

RESUMEN

Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 µC/cm2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.


Asunto(s)
Encéfalo/fisiología , Estimulación Eléctrica/instrumentación , Electrodos Implantados , Grafito/química , Neuronas/fisiología , Imagen Óptica/instrumentación , Animales , Diseño de Equipo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Modelos Moleculares
7.
J Biomed Mater Res B Appl Biomater ; 105(1): 204-210, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26462133

RESUMEN

The wetting characteristics of self-assembled monolayers (SAMs) on three different surface structures of thin film, microcone array, and nanowire forest topologies, which were chemically modified using phosphonic acid (HDF-PA and OD-PA) and trichlorosilane (HDF-S), were investigated. The molecular SAM-coated nanowire forest structures exhibited superhydrophobic properties with contact angles of 150.6°-155.4°, compared with the other structures combined with OD-PA, HDF-PA, and HDF-S SAMs, which displayed contact angles of 99.5°-116.8°. Moreover, the HDF-PA and HDF-S SAM-coated nanowire forest structures showed omniphobic properties for both flat and curved surfaces, irrespective of the substrate form. Four liquid droplets of different viscosities and composition (water, urea solution, oil, and photoresist) slid on the HDF-PA and HDF-S SAM-coated nanowire forest surfaces without leaving any traces. The omniphobic properties of the molecular SAM-coated nanowire forest structures developed in this study could be used for various applications in which their slippery effect is desirable, such as in medical tubes and the interior of pipes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 204-210, 2017.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanocables/química , Ácidos Fosforosos/química , Silanos/química , Humanos
8.
Appl Phys Lett ; 109(15): 152105, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27795570

RESUMEN

Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 µS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics.

9.
Nat Protoc ; 11(11): 2201-2222, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27735935

RESUMEN

Transparent graphene-based neural electrode arrays provide unique opportunities for simultaneous investigation of electrophysiology, various neural imaging modalities, and optogenetics. Graphene electrodes have previously demonstrated greater broad-wavelength transmittance (∼90%) than other transparent materials such as indium tin oxide (∼80%) and ultrathin metals (∼60%). This protocol describes how to fabricate and implant a graphene-based microelectrocorticography (µECoG) electrode array and subsequently use this alongside electrophysiology, fluorescence microscopy, optical coherence tomography (OCT), and optogenetics. Further applications, such as transparent penetrating electrode arrays, multi-electrode electroretinography, and electromyography, are also viable with this technology. The procedures described herein, from the material characterization methods to the optogenetic experiments, can be completed within 3-4 weeks by an experienced graduate student. These protocols should help to expand the boundaries of neurophysiological experimentation, enabling analytical methods that were previously unachievable using opaque metal-based electrode arrays.


Asunto(s)
Electrodos Implantados , Electrofisiología/instrumentación , Grafito , Imagen Molecular/instrumentación , Optogenética/instrumentación , Animales , Electrodos , Diseño de Equipo , Ratones , Ratas , Compuestos de Estaño/química
10.
Sci Rep ; 5: 14018, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26354891

RESUMEN

Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

11.
Sci Rep ; 5: 14321, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26394930

RESUMEN

Selective filtration of gas, water, and liquid or gaseous oil is essential to prevent possible environmental pollution and machine/facility malfunction in oil-based industries. Novel materials and structures able to selectively and efficiently filter liquid and vapor in various types of solutions are therefore in continuous demand. Here, we investigate selective gas-water-oil filtration using three-dimensional graphene structures. The proposed approach is based on the adjustable wettability of three-dimensional graphene foams. Three such structures are developed in this study; the first allows gas, oil, and water to pass, the second blocks water only, and the third is exclusively permeable to gas. In addition, the ability of three-dimensional graphene structures with a self-assembled monolayer to selectively filter oil is demonstrated. This methodology has numerous potential practical applications as gas, water, and/or oil filtration is an essential component of many industries.

12.
ACS Appl Mater Interfaces ; 7(30): 16296-302, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26200320

RESUMEN

The capability for robust operation of nanoscale transistors under harsh environments is equally important as their operating parameters such as high on-currents, high mobility, and high sensing selectivity. For electronic/biomedical applications, in particular, transistor operation must be stable under diverse conditions including ambient humidity, water, blood, and oxygen. Here we demonstrate the use of a self-assembled monolayer of octadecylphosphonic acid (OD-PA) to passivate a functionalized nanowire transistor, allowing the device to operate consistently in such environments. In contrast, without passivation, the characteristics (especially the threshold voltage) of identical nanowire transistors were dramatically altered under these conditions. Furthermore, the OD-PA-passivated transistor shows no signs of long-term stability deterioration and maintains equally high sensing selectivity to light under the harsh environments because of OD-PA's optical transparency. These results demonstrate the suitability of OD-PA passivation methods for fabricating commercial nanoelectronics.


Asunto(s)
Análisis Químico de la Sangre , Nanocables/química , Oxígeno/química , Transistores Electrónicos , Agua/química , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humedad , Ensayo de Materiales , Nanocables/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...