Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865092

RESUMEN

There has recently been an explosion of interest in how "higher-order" structures emerge in complex systems comprised of many interacting elements (often called "synergistic" information). This "emergent" organization has been found in a variety of natural and artificial systems, although at present, the field lacks a unified understanding of what the consequences of higher-order synergies and redundancies are for systems under study. Typical research treats the presence (or absence) of synergistic information as a dependent variable and report changes in the level of synergy in response to some change in the system. Here, we attempt to flip the script: rather than treating higher-order information as a dependent variable, we use evolutionary optimization to evolve boolean networks with significant higher-order redundancies, synergies, or statistical complexity. We then analyze these evolved populations of networks using established tools for characterizing discrete dynamics: the number of attractors, the average transient length, and the Derrida coefficient. We also assess the capacity of the systems to integrate information. We find that high-synergy systems are unstable and chaotic, but with a high capacity to integrate information. In contrast, evolved redundant systems are extremely stable, but have negligible capacity to integrate information. Finally, the complex systems that balance integration and segregation (known as Tononi-Sporns-Edelman complexity) show features of both chaosticity and stability, with a greater capacity to integrate information than the redundant systems while being more stable than the random and synergistic systems. We conclude that there may be a fundamental trade-off between the robustness of a system's dynamics and its capacity to integrate information (which inherently requires flexibility and sensitivity) and that certain kinds of complexity naturally balance this trade-off.

2.
Proc Natl Acad Sci U S A ; 120(41): e2305180120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788314

RESUMEN

Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show de novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near-instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.

3.
Soft Robot ; 10(4): 674-686, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37083430

RESUMEN

Advances in science and engineering often reveal the limitations of classical approaches initially used to understand, predict, and control phenomena. With progress, conceptual categories must often be re-evaluated to better track recently discovered invariants across disciplines. It is essential to refine frameworks and resolve conflicting boundaries between disciplines such that they better facilitate, not restrict, experimental approaches and capabilities. In this essay, we address specific questions and critiques which have arisen in response to our research program, which lies at the intersection of developmental biology, computer science, and robotics. In the context of biological machines and robots, we explore changes across concepts and previously distinct fields that are driven by recent advances in materials, information, and life sciences. Herein, each author provides their own perspective on the subject, framed by their own disciplinary training. We argue that as with computation, certain aspects of developmental biology and robotics are not tied to specific materials; rather, the consilience of these fields can help to shed light on issues of multiscale control, self-assembly, and relationships between form and function. We hope new fields can emerge as boundaries arising from technological limitations are overcome, furthering practical applications from regenerative medicine to useful synthetic living machines.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Robótica , Computadores , Ingeniería , Medicina Regenerativa
4.
Nature ; 602(7897): 393-402, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173338

RESUMEN

Autonomous robots comprise actuation, energy, sensory and control systems built from materials and structures that are not necessarily designed and integrated for multifunctionality. Yet, animals and other organisms that robots strive to emulate contain highly sophisticated and interconnected systems at all organizational levels, which allow multiple functions to be performed simultaneously. Herein, we examine how system integration and multifunctionality in nature inspires a new paradigm for autonomous robots that we call Embodied Energy. Whereas most untethered robots use batteries to store energy and power their operation, recent advancements in energy-storage techniques enable chemical or electrical energy sources to be embodied directly within the structures and materials used to create robots, rather than requiring separate battery packs. This perspective highlights emerging examples of Embodied Energy in the context of developing autonomous robots.

5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845026

RESUMEN

All living systems perpetuate themselves via growth in or on the body, followed by splitting, budding, or birth. We find that synthetic multicellular assemblies can also replicate kinematically by moving and compressing dissociated cells in their environment into functional self-copies. This form of perpetuation, previously unseen in any organism, arises spontaneously over days rather than evolving over millennia. We also show how artificial intelligence methods can design assemblies that postpone loss of replicative ability and perform useful work as a side effect of replication. This suggests other unique and useful phenotypes can be rapidly reached from wild-type organisms without selection or genetic engineering, thereby broadening our understanding of the conditions under which replication arises, phenotypic plasticity, and how useful replicative machines may be realized.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Reproducción Asexuada/fisiología , Reproducción/fisiología , Adaptación Fisiológica/fisiología , Animales , Inteligencia Artificial , Ingeniería Genética/métodos , Regeneración Tisular Dirigida/métodos , Fenotipo , Agregado de Proteínas/fisiología , Biología Sintética/métodos , Xenopus laevis/embriología , Xenopus laevis/metabolismo
6.
Adv Mater ; 33(19): e2002882, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32954582

RESUMEN

One of the key differentiators between biological and artificial systems is the dynamic plasticity of living tissues, enabling adaptation to different environmental conditions, tasks, or damage by reconfiguring physical structure and behavioral control policies. Lack of dynamic plasticity is a significant limitation for artificial systems that must robustly operate in the natural world. Recently, researchers have begun to leverage insights from regenerating and metamorphosing organisms, designing robots capable of editing their own structure to more efficiently perform tasks under changing demands and creating new algorithms to control these changing anatomies. Here, an overview of the literature related to robots that change shape to enhance and expand their functionality is presented. Related grand challenges, including shape sensing, finding, and changing, which rely on innovations in multifunctional materials, distributed actuation and sensing, and somatic control to enable next-generation shape changing robots are also discussed.


Asunto(s)
Biomimética , Robótica , Simulación por Computador
7.
Artif Life ; 26(1): 90-111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027531

RESUMEN

Many factors influence the evolvability of populations, and this article illustrates how intrinsic mortality (death induced through internal factors) in an evolving population contributes favorably to evolvability on a fixed deceptive fitness landscape. We test for evolvability using the hierarchical if-and-only-if (h-iff) function as a deceptive fitness landscape together with a steady state genetic algorithm (SSGA) with a variable mutation rate and indiscriminate intrinsic mortality rate. The mutation rate and the intrinsic mortality rate display a relationship for finding the global maximum. This relationship was also found when implementing the same deceptive fitness landscape in a spatial model consisting of an evolving population. We also compared the performance of the optimal mutation and mortality rate with a state-of-the-art evolutionary algorithm called age-fitness Pareto optimization (AFPO) and show how the two approaches traverse the h-iff landscape differently. Our results indicate that the intrinsic mortality rate and mutation rate induce random genetic drift that allows a population to efficiently traverse a deceptive fitness landscape. This article gives an overview of how intrinsic mortality influences the evolvability of a population. It thereby supports the premise that programmed death of individuals could have a beneficial effect on the evolvability of the entire population.


Asunto(s)
Evolución Biológica , Muerte , Aptitud Genética , Modelos Genéticos , Mutación , Algoritmos , Flujo Genético , Mortalidad
8.
Proc Natl Acad Sci U S A ; 117(4): 1853-1859, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31932426

RESUMEN

Living systems are more robust, diverse, complex, and supportive of human life than any technology yet created. However, our ability to create novel lifeforms is currently limited to varying existing organisms or bioengineering organoids in vitro. Here we show a scalable pipeline for creating functional novel lifeforms: AI methods automatically design diverse candidate lifeforms in silico to perform some desired function, and transferable designs are then created using a cell-based construction toolkit to realize living systems with the predicted behaviors. Although some steps in this pipeline still require manual intervention, complete automation in future would pave the way to designing and deploying unique, bespoke living systems for a wide range of functions.


Asunto(s)
Algoritmos , Automatización , Bioingeniería/métodos , Simulación por Computador , Embrión no Mamífero/fisiología , Modelos Biológicos , Xenopus laevis/fisiología , Animales , Células Artificiales , Embrión no Mamífero/citología , Humanos
9.
Nature ; 568(7753): 477-486, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31019318

RESUMEN

Machines powered by artificial intelligence increasingly mediate our social, cultural, economic and political interactions. Understanding the behaviour of artificial intelligence systems is essential to our ability to control their actions, reap their benefits and minimize their harms. Here we argue that this necessitates a broad scientific research agenda to study machine behaviour that incorporates and expands upon the discipline of computer science and includes insights from across the sciences. We first outline a set of questions that are fundamental to this emerging field and then explore the technical, legal and institutional constraints on the study of machine behaviour.


Asunto(s)
Inteligencia Artificial , Inteligencia Artificial/legislación & jurisprudencia , Inteligencia Artificial/tendencias , Humanos , Motivación , Robótica
10.
Prev Med Rep ; 13: 224-228, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30705810

RESUMEN

•Crowdsourcing can be used to detect unexpected barriers to male weight loss.•Some unique behaviors related to high BMI were revealed including watching others play video games.•Novel behaviors to target: less watching video games and more organized physical activity.

11.
Sci Rep ; 8(1): 16057, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361484

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 13934, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224743

RESUMEN

Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments.

13.
Soft Robot ; 5(4): 475-495, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29985740

RESUMEN

Designing soft robots poses considerable challenges; automated design approaches may be particularly appealing in this field, as they promise to optimize complex multimaterial machines with very little or no human intervention. Evolutionary soft robotics is concerned with the application of optimization algorithms inspired by natural evolution to let soft robots (both their morphologies and controllers) spontaneously evolve within physically realistic simulated environments, figuring out how to satisfy a set of objectives defined by human designers. In this article, a powerful evolutionary system is put in place to perform a broad investigation on the free-form evolution of simulated walking and swimming soft robots in different environments. Three sets of experiments are reported, tackling different aspects of the evolution of soft locomotion. The first two explore the effects of different material properties on the evolution of terrestrial and aquatic soft locomotion: particularly, we show how different materials lead to the evolution of different morphologies, behaviors, and energy-performance trade-offs. It is found that within our simplified physics world, stiffer robots evolve more sophisticated and effective gaits and morphologies on land, while softer ones tend to perform better in water. The third set of experiments starts investigating the effect and potential benefits of major environmental transitions (land↔water) during evolution. Results provide interesting morphological exaptation phenomena and point out a potential asymmetry between land→water and water→land transitions: while the first type of transition appears to be detrimental, the second one seems to have some beneficial effects.

14.
J R Soc Interface ; 15(143)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899155

RESUMEN

Evolution sculpts both the body plans and nervous systems of agents together over time. By contrast, in artificial intelligence and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behaviour arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioural performance. Here, we further examine this hypothesis and demonstrate a technique for 'morphological innovation protection', which temporarily reduces selection pressure on recently morphologically changed individuals, thus enabling evolution some time to 'readapt' to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioural training-while simultaneously providing a test bed to investigate the theory of embodied cognition.


Asunto(s)
Inteligencia Artificial , Modelos Teóricos , Robótica
15.
Artif Life ; 23(3): 351-373, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28786727

RESUMEN

In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi) simulator. The agents are thus physically scaffolded. We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.


Asunto(s)
Robótica/instrumentación , Prueba de Estudio Conceptual
16.
Artif Life ; 22(3): 364-407, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472416

RESUMEN

We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994-when the first WebAL work appeared-up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010-2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area.


Asunto(s)
Internet , Modelos Biológicos , Biología Sintética , Vida , Investigación
17.
PLoS One ; 10(11): e0142524, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544199

RESUMEN

Rather than replacing human labor, there is growing evidence that networked computers create opportunities for collaborations of people and algorithms to solve problems beyond either of them. In this study, we demonstrate the conditions under which such synergy can arise. We show that, for a design task, three elements are sufficient: humans apply intuitions to the problem, algorithms automatically determine and report back on the quality of designs, and humans observe and innovate on others' designs to focus creative and computational effort on good designs. This study suggests how such collaborations should be composed for other domains, as well as how social and computational dynamics mutually influence one another during collaborative problem solving.


Asunto(s)
Computadores , Conducta Cooperativa , Solución de Problemas , Robótica , Algoritmos , Humanos
18.
PLoS One ; 10(3): e0120521, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25837602

RESUMEN

This paper identifies trends within and relationships between the amount of participation and the quality of contributions in three crowdsourced surveys. Participants were asked to perform a collective problem solving task that lacked any explicit incentive: they were instructed not only to respond to survey questions but also to pose new questions that they thought might-if responded to by others-predict an outcome variable of interest to them. While the three surveys had very different outcome variables, target audiences, methods of advertisement, and lengths of deployment, we found very similar patterns of collective behavior. In particular, we found that: the rate at which participants submitted new survey questions followed a heavy-tailed distribution; the distribution in the types of questions posed was similar; and many users posed non-obvious yet predictive questions. By analyzing responses to questions that contained a built-in range of valid response we found that less than 0.2% of responses lay outside of those ranges, indicating that most participants tend to respond honestly to surveys of this form, even without explicit incentives for honesty. While we did not find a significant relationship between the quantity of participation and the quality of contribution for both response submissions and question submissions, we did find several other more nuanced participant behavior patterns, which did correlate with contribution in one of the three surveys. We conclude that there exists an optimal time for users to pose questions early on in their participation, but only after they have submitted a few responses to other questions. This suggests that future crowdsourced surveys may attract more predictive questions by prompting users to pose new questions at specific times during their participation and limiting question submission at non-optimal times.


Asunto(s)
Colaboración de las Masas , Modelos Estadísticos , Encuestas y Cuestionarios , Algoritmos , Colaboración de las Masas/métodos , Humanos
19.
PLoS One ; 9(2): e87756, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505310

RESUMEN

Effective and simple screening tools are needed to detect behaviors that are established early in life and have a significant influence on weight gain later in life. Crowdsourcing could be a novel and potentially useful tool to assess childhood predictors of adult obesity. This exploratory study examined whether crowdsourcing could generate well-documented predictors in obesity research and, moreover, whether new directions for future research could be uncovered. Participants were recruited through social media to a question-generation website, on which they answered questions and were able to pose new questions that they thought could predict obesity. During the two weeks of data collection, 532 participants (62% female; age  =  26.5±6.7; BMI  =  29.0±7.0) registered on the website and suggested a total of 56 unique questions. Nineteen of these questions correlated with body mass index (BMI) and covered several themes identified by prior research, such as parenting styles and healthy lifestyle. More importantly, participants were able to identify potential determinants that were related to a lower BMI, but have not been the subject of extensive research, such as parents packing their children's lunch to school or talking to them about nutrition. The findings indicate that crowdsourcing can reproduce already existing hypotheses and also generate ideas that are less well documented. The crowdsourced predictors discovered in this study emphasize the importance of family interventions to fight obesity. The questions generated by participants also suggest new ways to express known predictors.


Asunto(s)
Colaboración de las Masas , Preferencias Alimentarias , Internet , Obesidad , Encuestas y Cuestionarios , Adulto , Femenino , Humanos , Masculino , Obesidad/epidemiología , Obesidad/etiología , Obesidad/fisiopatología
20.
PLoS Comput Biol ; 10(1): e1003399, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391483

RESUMEN

Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans.


Asunto(s)
Evolución Biológica , Biología Computacional , Simulación por Computador , Ambiente , Genoma , Humanos , Locomoción , Modelos Biológicos , Modelos Genéticos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA