Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(7): 3571-3582, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293870

RESUMEN

Among the existing nanosystems used in electrochemical sensing, gold nanoparticles (AuNPs) have attracted considerable attention owing to their intriguing chemical and physical properties such as good electrical conductivity, high electrocatalytic activity, and high surface-to-volume ratio. However, despite these useful characteristics, there are some issues due to their instability in solution that can give rise to aggregation phenomena and the use of hazardous chemicals in the most common synthetic procedures. With an aim to find a solution to these issues, recently, we prepared and characterized carbon dots (CDs), from olive solid wastes, and employed them as reducing and capping agents in photo-activated AuNP synthesis, thus creating CD-Au nanohybrids. These nanomaterials appear extremely stable in aqueous solutions at room temperature, are contemporary, and have been obtained using CDs, which are exclusively based on non-toxic elements, with an additional advantage of being generated from an otherwise waste material. In this paper, the synthesis and characterization of CD-Au nanohybrids are described, and the electrochemical experiments for hydroquinone detection are discussed. The results indicate that CD-Au acts as an efficient material for sensing hydroquinone, matching a wide range of interests in science from industrial processes to environmental pollution.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37999264

RESUMEN

In this study, we explore the potential of a blended material comprising CsPbI3:EuCl3 perovskite and Gig-Lox TiO2, a unique transparent spongy material known for its multi-branched porous structure, for application in solar cells. The inclusion of EuCl3 in CsPbI3 serves to stabilize the photoactive γ-phase with a bandgap of 1.75 eV, making it suitable for solar energy conversion in tandem solar cells. Our study applies X-ray-based techniques to investigate the structural properties and interfacial behavior within this blended material, in comparison with a reference perovskite layer deposited on glass. In addition, Spectroscopic ellipsometry is complemented with density functional theory calculations and photoluminescence measurements to elucidate the absorption and radiative emission properties of the blend. Notably, our findings reveal a significant quenching of photoluminescence within the blended material, underscoring the pivotal role of the distributed interfaces in facilitating efficient carrier injection from the CsPbI3:EuCl3 perovskite into the Gig-Lox TiO2 sponge. These findings pave the way for the application of the blend as an Electron Transport Layer (ETL) in semi-transparent perovskite solar cells for tandem and building integrated photovoltaics.

3.
Discov Nano ; 18(1): 113, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697156

RESUMEN

In this paper, we report on the synthesis of a new hybrid photocatalytic material activated by natural sunlight irradiation. The material consists of multiferroic nanoparticles of bismuth ferrite (BFO) modified through the growth of the Fe-based MIL-101 framework. Material characterization, conducted using various techniques (X-ray diffraction, transmission electron microscopy, FTIR, and X-ray photoelectron spectroscopies), confirmed the growth of the MIL-101 metal-organic framework on the BFO surface. The obtained system possesses the intrinsic photo-degradative properties of BFO nanoparticles significantly enhanced by the presence of MIL-101. The photocatalytic activity of this material was tested in antibacterial experiments conducted under natural sunlight exposure within the nanocomposite concentration range of 100-0.20 µg/ml. The MIL-modified BFO showed a significant decrease in both Minimum Inhibiting Concentration and Minimum Bactericide Concentration values compared to bare nanoparticles. This confirms the photo-activating effect of the MIL-101 modification. In particular, they show an increased antimicrobial activity against the tested Gram-positive species and the ability to begin to inhibit the growth of the four Escherichia coli strains, although at the maximum concentration tested. These results suggest that the new nanocomposite BiFeO3@MOF has been successfully developed and has proven to be an effective antibacterial agent against a wide range of microorganisms and a potential candidate in disinfection processes.

4.
Materials (Basel) ; 16(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37629929

RESUMEN

Metal-oxide-semiconductor (MOS) capacitors with Al2O3 as a gate insulator are fabricated on cubic silicon carbide (3C-SiC). Al2O3 is deposited both by thermal and plasma-enhanced Atomic Layer Deposition (ALD) on a thermally grown 5 nm SiO2 interlayer to improve the ALD nucleation and guarantee a better band offset with the SiC. The deposited Al2O3/SiO2 stacks show lower negative shifts of the flat band voltage VFB (in the range of about -3 V) compared with the conventional single SiO2 layer (in the range of -9 V). This lower negative shift is due to the combined effect of the Al2O3 higher permittivity (ε = 8) and to the reduced amount of carbon defects generated during the short thermal oxidation process for the thin SiO2. Moreover, the comparison between thermal and plasma-enhanced ALD suggests that this latter approach produces Al2O3 layers possessing better insulating behavior in terms of distribution of the leakage current breakdown. In fact, despite both possessing a breakdown voltage of 26 V, the T-ALD Al2O3 sample is characterised by a higher current density starting from 15 V. This can be attributable to the slightly inferior quality (in terms of density and defects) of Al2O3 obtained by the thermal approach and, which also explains its non-uniform dC/dV distribution arising by SCM maps.

5.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049785

RESUMEN

Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-ß-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer's Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.


Asunto(s)
Ciclodextrinas , Nanopartículas , Neuroblastoma , Humanos , Ciclodextrinas/farmacología , Peróxido de Hidrógeno , Antioxidantes/farmacología , Portadores de Fármacos , Tamaño de la Partícula
6.
Nanomaterials (Basel) ; 13(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110982

RESUMEN

The importance of lead analysis in environmental matrices becomes increasingly relevant due to the anthropogenic spread of toxic species in nature. Alongside the existing analytical methods to detect lead in a liquid environment, we propose a new dry approach for lead detection and measurement based on its capture from a liquid solution by a solid sponge and subsequent quantification based on X-ray analyses. The detection method exploits the relationship between the electronic density of the solid sponge, which depends on the captured lead, and the critical angle for total reflection of the X-rays. For this purpose, gig-lox TiO2 layers, grown by modified sputtering physical deposition, were implemented for their branched multi-porosity spongy structure that is ideal for capturing lead atoms or other metallic ionic species in a liquid environment. The gig-lox TiO2 layers grown on glass substrates were soaked into aqueous solutions containing different concentrations of Pb, dried after soaking, and finally probed through X-ray reflectivity analyses. It has been found that lead atoms are chemisorbed onto the many available surfaces within the gig-lox TiO2 sponge by establishing stable oxygen bonding. The infiltration of lead into the structure causes an increase in the overall electronic density of the layer and, thus, an increment of its critical angle. Based on the established linear relationship between the amount of lead adsorbed and the augmented critical angle, a standardized quantitative procedure to detect Pb is proposed. The method can be, in principle, applied to other capturing spongy oxides and toxic species.

7.
Phys Chem Chem Phys ; 24(36): 21549-21566, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065836

RESUMEN

Innovation is essential around the themes of climate change and sustainability. Commercial photovoltaics (PV) have noticeably contributed to getting to 22.1% share of the gross final energy consumption in Europe from renewable sources in 2020 but a steep further increase is urgent in the near future. Over the last few years, great success has been achieved by perovskites applied to PV, with mixed anions and cations in shared lattices that reached record efficiency values close to those of Si in laboratory-scale solar cells (∼26%). Their use has recently shed light on a medium/long-term compositional instability that arises from the partial miscibility of the species with similar role in the atomic lattice. The chemical route to prepare the materials for Perovskite Solar Cells (PSCs) also needs to be critically reviewed. Material waste and reuse are other concerns to be faced. This perspective paper indeed tackles some aspects for innovation and sustainability on the PSC field for production purposes. Some hints for technologically affordable processes based on in-vacuum deposition of Perovskites are provided in light of their sustainability and for the need to reduce production/maintenance costs. It is also discussed how to make in-vacuum production further competitive by boosting the material quality. Innovation is also projected into the theme of making sustainable choices for device architectures and materials. Carbon-based PSCs are highly focused since they allow avoiding the use of complex, unstable and costly HTLs. From the material side, pros and cons of using fully inorganic CsPbI3 are commented, framed by the current revival of single-cation perovskites. CsPbI3, in particolar, enables recycling and reuse initiatives thanks to the overall mass preservation under degradation. Some closing remarks are provided on the safe use of Pb as its effective sequestration before release from the PSC into the environment is properly engineered. We lastly trust that initiatives bringing together academic and industrial know-how in complementary fields able to take up responsible innovation will contribute to accelerating the ecological transition and will enable the societal transformation to fulfil the 2050 EU agenda for a sustainable future.

8.
Cryst Growth Des ; 22(8): 4996-5003, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35942119

RESUMEN

Despite the promising properties, the problem of cubic silicon carbide (3C-SiC) heteroepitaxy on silicon has not yet been resolved and its use in microelectronics is limited by the presence of extensive defects. In this paper, we used microphotoluminescence (µ-PL), molten KOH etching, and high-resolution scanning transmission electron microscopy (HRSTEM) to investigate the effect of nitrogen doping on the distribution of stacking faults (SFs) and assess how increasing dosages of nitrogen during chemical vapor deposition (CVD) growth inhibits the development of SFs. An innovative angle-resolved SEM observation approach of molten KOH-etched samples resulted in detailed statistics on the density of the different types of defects as a function of the growth thickness of 3C-SiC free-standing samples with varied levels of nitrogen doping. Moreover, we proceeded to shed light on defects revealed by a diamond-shaped pit. In the past, they were conventionally associated with dislocations (Ds) due to what happens in 4H-SiC, where the formation of pits is always linked with the presence of Ds. In this work, the supposed Ds were observed at high magnification (by HRSTEM), demonstrating that principally they are partial dislocations (PDs) that delimit an SF, whose development and propagation are suppressed by the presence of nitrogen. These results were compared with VESTA simulations, which allowed to simulate the 3C-SiC lattice to design two 3C-lattice domains delimited by different types of SFs. In addition, through previous experimental evidence, a preferential impact of nitrogen on the closure of 6H-like SFs was observed as compared to 4H-like SFs.

9.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269260

RESUMEN

Aluminum-doped zinc oxide (AZO) is an electrically conductive and optically transparent material with many applications in optoelectronics and photovoltaics as well as in the new field of plasmonic metamaterials. Most of its applications contemplate the use of complex and nanosized materials as substrates onto which the AZO forms the coating layer. Its morphological characteristics, especially the conformality and crystallographic structure, are crucial because they affect its opto-electrical response. Nevertheless, it was difficult to find literature data on AZO layers deposited on non-planar structures. We studied the AZO growth on silicon-nanowires (SiNWs) to understand its morphological evolution when it is formed on quasi one-dimensional nanostructures. We deposited by sputtering different AZO thicknesses, leading from nanoclusters until complete incorporation of the SiNWs array was achieved. At the early stages, AZO formed crystalline nano-islands. These small clusters unexpectedly contained detectable Al, even in these preliminary phases, and showed a wurtzite crystallographic structure. At higher thickness, they coalesced by forming a conformal polycrystalline shell over the nanostructured substrate. As the deposition time increased, the AZO conformal deposition led to a polycrystalline matrix growing between the SiNWs, until the complete array incorporation and planarization. After the early stages, an interesting phenomenon took place leading to the formation of hook-curved SiNWs covered by AZO. These nanostructures are potentially very promising for optical, electro-optical and plasmonic applications.

10.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35270016

RESUMEN

A nanometric hybrid system consisting of a Fe3O4 magnetic nanoparticles modified through the growth of Fe-based Metal-organic frameworks of the MIL (Materials Institute Lavoiser) was developed. The obtained system retains both the nanometer dimensions and the magnetic properties of the Fe3O4 nanoparticles and possesses increased the loading capability due to the highly porous Fe-MIL. It was tested to load, carry and release temozolomide (TMZ) for the treatment of glioblastoma multiforme one of the most aggressive and deadly human cancers. The chemical characterization of the hybrid system was performed through various complementary techniques: X-ray-diffraction, thermogravimetric analysis, FT-IR and X-ray photoelectron spectroscopies. The nanomaterial showed low toxicity and an increased adsorption capacity compared to bare Fe3O4 magnetic nanoparticles (MNPs). It can load about 12 mg/g of TMZ and carry the drug into A172 cells without degradation. Our experimental data confirm that, after 48 h of treatment, the TMZ-loaded hybrid nanoparticles (15 and 20 µg/mL) suppressed human glioblastoma cell viability much more effectively than the free drug. Finally, we found that the internalization of the MIL-modified system is more evident than bare MNPs at all the used concentrations both in the cytoplasm and in the nucleus suggesting that it can be capable of overcoming the blood-brain barrier and targeting brain tumors. In conclusion, these results indicate that this combined nanoparticle represents a highly promising drug delivery system for TMZ targeting into cancer cells.


Asunto(s)
Glioblastoma , Nanopartículas de Magnetita , Nanopartículas , Humanos , Línea Celular Tumoral , Glioblastoma/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Temozolomida/farmacología , Temozolomida/uso terapéutico
11.
Materials (Basel) ; 14(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576572

RESUMEN

In this review paper, several new approaches about the 3C-SiC growth are been presented. In fact, despite the long research activity on 3C-SiC, no devices with good electrical characteristics have been obtained due to the high defect density and high level of stress. To overcome these problems, two different approaches have been used in the last years. From one side, several compliance substrates have been used to try to reduce both the defects and stress, while from another side, the first bulk growth has been performed to try to improve the quality of this material with respect to the heteroepitaxial one. From all these studies, a new understanding of the material defects has been obtained, as well as regarding all the interactions between defects and several growth parameters. This new knowledge will be the basis to solve the main issue of the 3C-SiC growth and reach the goal to obtain a material with low defects and low stress that would allow for realizing devices with extremely interesting characteristics.

12.
ACS Omega ; 6(31): 20667-20675, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34396012

RESUMEN

Silicon carbide power semiconductors overcome some limitations of silicon chips, and therefore, SiC is an attractive candidate for next-generation power electronics. In addition, the number of possible vertical devices that can be obtained on a given surface using the trench technique is significantly larger than that attainable using a planar setup. Moreover, a SiC trench power metal oxide semiconductor field-effect transistor (power MOSFET) structure removes the junction field-effect transistor (JFET) region (that would decrease the current flow width) and improves the channel density, thus reducing the specific electrical resistance. Consequently, in the present study, we report on the chemical bonding state of elements and structural characterization of trenches, obtained using SF6-based plasma etching, on the 4H-SiC polytype substrate. An interferometric algorithm that finds the endpoint to stop etching governed the trench depth. Scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy analyses stated the high quality and uniformity of the trenches. These materials are particularly promising for the fabrication of the SiC MOSFET to be implemented in the manufacturing of power devices.

13.
Pharmaceutics ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452254

RESUMEN

Levofloxacin (LVF) is an antibacterial drug approved for the treatment of ocular infections. However, due to the low ocular bioavailability, high doses are needed, causing bacterial resistance. Polymeric nanospheres (NPs) loading antibiotic drugs represent the most promising approach to eradicate ocular infections and to treat pathogen resistance. In this study, we have developed chitosan NPs based on sulfobutyl-ether-ß-cyclodextrin (CH/SBE-ß-CD NPs) for ocular delivery of LVF. CH/SBE-ß-CD NPs loading LVF were characterized in terms of encapsulation parameters, morphology, and sizes, in comparison to NPs produced without the macrocycle. Nuclear magnetic resonance and UV-vis spectroscopy studies demonstrated that SBE-ß-CD is able to complex LVF and to influence encapsulation parameters of NPs, producing high encapsulation efficiency and LVF loading. The NPs were homogenous in size, with a hydrodynamic radius between 80 and 170 nm and positive zeta potential (ζ) values. This surface property could promote the interaction of NPs with the negatively charged ocular tissue, increasing their residence time and, consequently, LVF efficacy. In vitro, antibacterial activity against Gram-positive and Gram-negative bacteria showed a double higher activity of CH/SBE-ß-CD NPs loading LVF compared to the free drug, suggesting that chitosan NPs based on SBE-ß-CD could be a useful system for the treatment of ocular infections.

14.
Materials (Basel) ; 14(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443290

RESUMEN

We present a method for the simulation of the kinetic evolution in the sub µs timescale for composite materials containing regions occupied by alloys, compounds, and mixtures belonging to the Ni-Si-C ternary system. Pulsed laser irradiation (pulses of the order of 100 ns) promotes this evolution. The simulation approach is formulated in the framework of the phase-field theory and it consists of a system of coupled non-linear partial differential equations (PDEs), which considers as variables the following fields: the laser electro-magnetic field, the temperature, the phase-field and the material (Ni, Si, C, C clusters and Ni-silicides) densities. The model integrates a large set of materials and reaction parameters which could also self-consistently depend on the model variables. A parameter calibration is also proposed, specifically suited for the wavelength of a widely used class of excimer lasers (λ = 308 nm). The model is implemented on a proprietary laser annealing technology computer-aided design (TCAD) tool based on the finite element method (FEM). This integration allows, in principle, numerical solutions in systems of any dimension. Here we discuss the complex simulation trend in the one-dimensional case, considering as a starting state, thin films on 4H-SiC substrates, i.e., a configuration reproducing a technologically relevant case study. Simulations as a function of the laser energy density show an articulated scenario, also induced by the variables' dependency of the materials' parameters, for the non-melting, partial-melting and full-melting process conditions. The simulation results are validated by post-process experimental analyses of the microstructure and composition of the irradiated samples.

15.
Materials (Basel) ; 14(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34279246

RESUMEN

In this work, raw halloysite mineral from Dunino (Poland) has been characterized and tested as an efficient and low-cost adsorbent for dye removal from water. The morphology and structure of this clay were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the chemical composition was evaluated by means of X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS). The results showed that it is made up of both platy and tubular structures, mainly composed of Si, Al, and O. Iron oxide particles covering the platy structures were also observed. The surface charge of halloysite was measured by z-potential measurements and by the evaluation of the point of zero charge. The clay was tested as an adsorbent for the removal of positively and negatively charged dye molecules, i.e., methylene blue (MB) and methyl orange (MO), both separately and in a mixed-dye solution. Halloysite showed the ability to efficiently and selectively remove MB molecules by adsorption, both in a single-dye solution and in a mixed one. The adsorption of positive dyes on the clay surface mainly occurred through ion exchange at negatively charged sites on its surface. The possibility of regenerating the clay for further dye removal processes is also shown.

16.
Nanomaterials (Basel) ; 11(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068185

RESUMEN

The realization of stable inorganic perovskites is crucial to enable low-cost solution-processed photovoltaics. However, the main candidate material, CsPbI3, suffers from a spontaneous phase transition at room temperature towards a photo-inactive orthorhombic δ-phase (yellow phase). Here we used theoretical and experimental methods to study the structural and electronic features that determine the stability of the CsPbI3 perovskite. We argued that the two physical characteristics that favor the black perovskite phase at low temperatures are the strong spatial confinement in nanocrystalline structures and the level of electron doping in the material. Within this context, we discussed practical procedures for the realization of long-lasting inorganic lead halide perovskites.

17.
ACS Chem Neurosci ; 11(17): 2566-2576, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32687307

RESUMEN

Alzheimer's disease (AD) is linked to the abnormal accumulation of amyloid ß peptide (Aß) aggregates in the brain. Silybin B, a natural compound extracted from milk thistle (Silybum marianum), has been shown to significantly inhibit Aß aggregation in vitro and to exert neuroprotective properties in vivo. However, further explorations of silybin B's clinical potential are currently limited by three main factors: (a) poor solubility, (b) instability in blood serum, and (c) only partial knowledge of silybin's mechanism of action. Here, we address these three limitations. We demonstrate that conjugation of a trehalose moiety to silybin significantly increases both water solubility and stability in blood serum without significantly compromising its antiaggregation properties. Furthermore, using a combination of biophysical techniques with different spatial resolution, that is, TEM, ThT fluorescence, CD, and NMR spectroscopy, we profile the interactions of the trehalose conjugate with both Aß monomers and oligomers and evidence that silybin may shield the "toxic" surfaces formed by the N-terminal and central hydrophobic regions of Aß. Finally, comparative analysis with silybin A, a less active diastereoisomer of silybin B, revealed how even subtle differences in chemical structure may entail different effects on amyloid inhibition. The resulting insight on the mechanism of action of silybins as aggregation inhibitors is anticipated to facilitate the future investigation of silybin's therapeutic potential.


Asunto(s)
Péptidos beta-Amiloides , Profármacos , Antioxidantes , Fragmentos de Péptidos , Silibina , Trehalosa
18.
RSC Adv ; 10(43): 25426-25434, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35518625

RESUMEN

Oxygen evolution reaction (OER) is a demanding step within the water splitting process for its requirement of a high overpotential. Thus, to overcome this unfavourable kinetics, an efficient catalyst is required to expedite the process. In this context, we report on Ni foam functionalised with low cost iron (Fe) and iron hydroxide (Fe(OH) X ), wet chemically synthesized as OER catalysts. The prepared catalyst based on iron hydroxide precipitate shows a promising performance, exhibiting an overpotential of 270 mV (at a current density of 10 mA cm-2 in 1 M KOH solution), an efficient Tafel slope of ∼50 mV dec-1 and stable chronopotentiometry. The promising performance of the anode was further reproduced in the overall water splitting reaction with a two electrode cell. The overall reaction requires a lower potential of 1.508 V to afford 10 mA cm-2, corresponding to 81.5% electrical to fuel efficiency.

19.
ACS Omega ; 4(20): 18495-18501, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737807

RESUMEN

A novel metal organic framework (MOF)-based composite was synthesized on a Cu substrate via a two-step route. An amorphous iron oxide/hydroxide layer was first deposited on a Cu foil through a sol-gel process; then, Fe-NH2-Mil-101 was grown using both the iron oxide/hydroxide matrix, which provided the Fe3+ centers needed for MOF formation, and 2-aminoterephthalic acid ethanol solution. This innovative synthetic strategy is a convenient approach to grow metal oxide/hydroxide and MOF composite films. Structural, chemical, and morphological characterizations suggest that the obtained composite is made up of both the α-FeOOH goethite and the NH2-Mil-101 phases featuring a hybrid heterostructure. The electrochemical features of the composite structure were investigated using electrochemical impedance spectroscopy. The impedance behavior of the α-FeOOH/NH2-Mil-101 films indicates that they can be used as efficient high surface area metal hydroxide/MOF-based electrodes for applications such as energy storage and sensing.

20.
ACS Omega ; 4(19): 17967-17971, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31720500

RESUMEN

Quantum confinement effects in silicon nanowires (SiNWs) are expected when their diameter is less than the size of the free exciton (with a Bohr radius ∼5 nm) in bulk silicon. However, their synthesis represents a considerable technological challenge. The vapor-liquid-solid (VLS) mechanism, mediated by metallic nanoclusters brought to the eutectic liquid state, is most widely used for its simplicity and control on the SiNWs size, shape, orientation, density, and surface smoothness. VLS growth is often performed within high-vacuum physical vapor deposition systems, where the eutectic composition and the pressure conditions define the minimum diameter of the final nanowire usually around 100 nm. In this article, we present and discuss the SiNWs' growth by the VLS method in a plasma-based chemical vapor deposition system, working in the mTorr pressure range. The purpose is to demonstrate that it is possible to obtain nanostructures with sizes well beyond the observed limit by modulating the deposition parameters, like chamber pressure and plasma power, to find the proper thermodynamic conditions for nucleation. The formation of SiNWs with sub-5 nm diameter is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...