Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Res ; 50(1): 77, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31590684

RESUMEN

This report describes the detection of a triple reassortant swine influenza A virus of H1avN2 subtype. It evolved from an avian-like swine H1avN1 that first acquired the N2 segment from a seasonal H3N2, then the M segment from a 2009 pandemic H1N1, in two reassortments estimated to have occurred 10 years apart. This study illustrates how recurrent influenza infections increase the co-infection risk and facilitate evolutionary jumps by successive gene exchanges. It recalls the importance of appropriate biosecurity measures inside holdings to limit virus persistence and interspecies transmissions, which both contribute to the emergence of new potentially zoonotic viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H1N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus Reordenados/fisiología , Enfermedades de los Porcinos/virología , Animales , Francia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Sus scrofa , Porcinos
2.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30258006

RESUMEN

The H1N1 influenza virus responsible for the most recent pandemic in 2009 (H1N1pdm) has spread to swine populations worldwide while it replaced the previous seasonal H1N1 virus in humans. In France, surveillance of swine influenza A viruses in pig herds with respiratory outbreaks led to the detection of 44 H1N1pdm strains between 2009 and 2017, regardless of the season, and findings were not correlated with pig density. From these isolates, 17 whole-genome sequences were obtained, as were 6 additional hemagglutinin (HA)/neuraminidase (NA) sequences, in order to perform spatial and temporal analyses of genetic diversity and to compare evolutionary patterns of H1N1pdm in pigs to patterns for human strains. Following mutation accumulation and fixation over time, phylogenetic analyses revealed for the first time the divergence of a swine-specific genogroup within the H1N1pdm lineage. The divergence is thought to have occurred around 2011, although this was demonstrated only through strains isolated in 2015 to 2016 in the southern half of France. To date, these H1N1pdm swine strains have not been related to any increased virulence in swine herds and have not exhibited any antigenic drift compared to seasonal human strains. However, further monitoring is encouraged, as diverging evolutionary patterns in these two species, i.e., swine and humans, may lead to the emergence of viruses with a potentially higher risk to both animal and human health.IMPORTANCE Pigs are a "mixing vessel" for influenza A viruses (IAVs) because of their ability to be infected by avian and human IAVs and their propensity to facilitate viral genomic reassortment events. Also, as IAVs may evolve differently in swine and humans, pigs can become a reservoir for old human strains against which the human population has become immunologically naive. Thus, viruses from the novel swine-specific H1N1pdm genogroup may continue to diverge from seasonal H1N1pdm strains and/or from other H1N1pdm viruses infecting pigs and lead to the emergence of viruses that would not be covered by human vaccines and/or swine vaccines based on antigens closely related to the original H1N1pdm virus. This discovery confirms the importance of encouraging swine IAV monitoring because H1N1pdm swine viruses could carry an increased risk to both human and swine health in the future as a whole H1N1pdm virus or gene provider in subsequent reassortant viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/clasificación , Infecciones por Orthomyxoviridae/epidemiología , Enfermedades de los Porcinos/virología , Secuenciación Completa del Genoma/métodos , Animales , Evolución Molecular , Francia/epidemiología , Hemaglutininas/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/virología , Pandemias , Filogenia , Vigilancia de la Población , Análisis Espacio-Temporal , Porcinos , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética , Secuenciación Completa del Genoma/veterinaria
3.
Virol J ; 15(1): 7, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29316958

RESUMEN

BACKGROUND: Swine influenza is a respiratory infection of pigs that may have a significant economic impact in affected herds and pose a threat to the human population since swine influenza A viruses (swIAVs) are zoonotic pathogens. Due to the increasing genetic diversity of swIAVs and because novel reassortants or variants may become enzootic or have zoonotic implications, surveillance is strongly encouraged. Therefore, diagnostic tests and advanced technologies able to identify the circulating strains rapidly are critically important. RESULTS: Several reverse transcription real-time PCR assays (RT-qPCRs) were developed to subtype European swIAVs in clinical samples previously identified as containing IAV genome. The RT-qPCRs aimed to discriminate HA genes of four H1 genetic lineages (H1av, H1hu, H1huΔ146-147, H1pdm) and one H3 lineage, and NA genes of two N1 lineages (N1, N1pdm) and one N2 lineage. After individual validation, each RT-qPCR was adapted to high-throughput analyses in parallel to the amplification of the IAV M gene (target for IAV detection) and the ß-actin gene (as an internal control), in order to test the ten target genes simultaneously on a large number of clinical samples, using low volumes of reagents and RNA extracts. CONCLUSION: The RT-qPCRs dedicated to IAV molecular subtyping enabled the identification of swIAVs from the four viral subtypes that are known to be enzootic in European pigs, i.e. H1avN1, H1huN2, H3N2 and H1N1pdm. They also made it possible to discriminate a new antigenic variant (H1huN2Δ146-147) among H1huN2 viruses, as well as reassortant viruses, such as H1huN1 or H1avN2 for example, and virus mixtures. These PCR techniques exhibited a gain in sensitivity as compared to end-point RT-PCRs, enabling the characterization of biological samples with low genetic loads, with considerable time saving. Adaptation to high-throughput analyses appeared effective, both in terms of specificity and sensitivity. This new development opens novel perspectives in diagnostic capacities that could be very useful for swIAV surveillance and large-scale epidemiological studies.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Animales , Línea Celular , Perros , Europa (Continente)/epidemiología , Genes Virales , Variación Genética , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Tipificación Molecular/métodos , Infecciones por Orthomyxoviridae/diagnóstico , Reproducibilidad de los Resultados , Porcinos
4.
J Virol ; 89(19): 9920-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202246

RESUMEN

UNLABELLED: The emergence in humans of the A(H1N1)pdm09 influenza virus, a complex reassortant virus of swine origin, highlighted the importance of worldwide influenza virus surveillance in swine. To date, large-scale surveillance studies have been reported for southern China and North America, but such data have not yet been described for Europe. We report the first large-scale genomic characterization of 290 swine influenza viruses collected from 14 European countries between 2009 and 2013. A total of 23 distinct genotypes were identified, with the 7 most common comprising 82% of the incidence. Contrasting epidemiological dynamics were observed for two of these genotypes, H1huN2 and H3N2, with the former showing multiple long-lived geographically isolated lineages, while the latter had short-lived geographically diffuse lineages. At least 32 human-swine transmission events have resulted in A(H1N1)pdm09 becoming established at a mean frequency of 8% across European countries. Notably, swine in the United Kingdom have largely had a replacement of the endemic Eurasian avian virus-like ("avian-like") genotypes with A(H1N1)pdm09-derived genotypes. The high number of reassortant genotypes observed in European swine, combined with the identification of a genotype similar to the A(H3N2)v genotype in North America, underlines the importance of continued swine surveillance in Europe for the purposes of maintaining public health. This report further reveals that the emergences and drivers of virus evolution in swine differ at the global level. IMPORTANCE: The influenza A(H1N1)pdm09 virus contains a reassortant genome with segments derived from separate virus lineages that evolved in different regions of the world. In particular, its neuraminidase and matrix segments were derived from the Eurasian avian virus-like ("avian-like") lineage that emerged in European swine in the 1970s. However, while large-scale genomic characterization of swine has been reported for southern China and North America, no equivalent study has yet been reported for Europe. Surveillance of swine herds across Europe between 2009 and 2013 revealed that the A(H1N1)pdm09 virus is established in European swine, increasing the number of circulating lineages in the region and increasing the possibility of the emergence of a genotype with human pandemic potential. It also has implications for veterinary health, making prevention through vaccination more challenging. The identification of a genotype similar to the A(H3N2)v genotype, causing zoonoses at North American agricultural fairs, underlines the importance of continued genomic characterization in European swine.


Asunto(s)
Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , Monitoreo Epidemiológico/veterinaria , Europa (Continente)/epidemiología , Evolución Molecular , Genotipo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/epidemiología , Gripe Humana/virología , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...