Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 10(3)2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204509

RESUMEN

Overexpression of G protein-coupled receptors (GPCRs) in tumours is widely used to develop GPCR-targeting radioligands for solid tumour imaging in the context of diagnosis and even treatment. The human vasoactive neuropeptide urotensin II (hUII), which shares structural analogies with somatostatin, interacts with a single high affinity GPCR named UT. High expression of UT has been reported in several types of human solid tumours from lung, gut, prostate, or breast, suggesting that UT is a valuable novel target to design radiolabelled hUII analogues for cancer diagnosis. In this study, two original urotensinergic analogues were first conjugated to a DOTA chelator via an aminohexanoic acid (Ahx) hydrocarbon linker and then -hUII and DOTA-urantide, complexed to the radioactive metal indium isotope to successfully lead to radiolabelled DOTA-Ahx-hUII and DOTA-Ahx-urantide. The 111In-DOTA-hUII in human plasma revealed that only 30% of the radioligand was degraded after a 3-h period. DOTA-hUII and DOTA-urantide exhibited similar binding affinities as native peptides and relayed calcium mobilization in HEK293 cells expressing recombinant human UT. DOTA-hUII, not DOTA-urantide, was able to promote UT internalization in UT-expressing HEK293 cells, thus indicating that radiolabelled 111In-DOTA-hUII would allow sufficient retention of radioactivity within tumour cells or radiolabelled DOTA-urantide may lead to a persistent binding on UT at the plasma membrane. The potential of these radioligands as candidates to target UT was investigated in adenocarcinoma. We showed that hUII stimulated the migration and proliferation of both human lung A549 and colorectal DLD-1 adenocarcinoma cell lines endogenously expressing UT. In vivo intravenous injection of 111In-DOTA-hUII in C57BL/6 mice revealed modest organ signals, with important retention in kidney. 111In-DOTA-hUII or 111In-DOTA-urantide were also injected in nude mice bearing heterotopic xenografts of lung A549 cells or colorectal DLD-1 cells both expressing UT. The observed significant renal uptake and low tumour/muscle ratio (around 2.5) suggest fast tracer clearance from the organism. Together, DOTA-hUII and DOTA-urantide were successfully radiolabelled with 111Indium, the first one functioning as a UT agonist and the second one as a UT-biased ligand/antagonist. To allow tumour-specific targeting and prolong body distribution in preclinical models bearing some solid tumours, these radiolabelled urotensinergic analogues should be optimized for being used as potential molecular tools for diagnosis imaging or even treatment tools.


Asunto(s)
Proteínas de Neoplasias/metabolismo , Neoplasias , Radiofármacos , Receptores Acoplados a Proteínas G/metabolismo , Células A549 , Animales , Femenino , Células HEK293 , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacología , Humanos , Radioisótopos de Indio/química , Radioisótopos de Indio/farmacología , Ratones , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Radiofármacos/química , Radiofármacos/farmacología , Urotensinas/química , Urotensinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Oncoimmunology ; 6(10): e1331195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123949

RESUMEN

Despite the high interest and concern due to an increasing incidence and death rate, patients who develop muscle invasive bladder cancer (MIBC) have few options available. However, the past decade has produced many candidate bladder tumor-specific markers but further development of these markers is still needed for creating effective targeted medications to solve this urgent need. Interleukin-5 receptor α-subunit (IL-5Rα) has recently been reported to be involved in MIBC progression. Thus, we aimed to validate IL-5Rα as a target for antibody-conjugates to better manage patients with MIBC. Patients were recruited and their tumors were processed for IL-5Rα immunohistochemical analysis. NOD/SCID mice were also heterotopically implanted with the human MIBC HT-1376 and HT-B9 cell lines and established xenografts immunohistochemically evaluated for IL-5Rα and compared against patient tumors. Using the mAb A14, an antibody-drug conjugate (ADC) and a radiolabeled immunoconjugate (RIC) were developed by conjugating to vinblastine and to the positron emitter copper-64 (64Cu), respectively. As a proof-of-concept for ADC and RIC efficacy, in vitro cytotoxicity and in vivo positron emission tomography (PET) imaging in tumor-bearing mice were performed, respectively. In addition, as rapid internalization and accumulation are important components for effective antibody-conjugates, we evaluated these aspects in response to IL-5 and 64Cu-A14 treatments. Our findings suggest that although IL-5Rα protein expression is preferentially increased in MIBC, it is rapid IL-5Rα-mediated internalization allowing vinblastine-A14 to have cytotoxic activity and 64Cu-A14 to detect MIBC tumors in vivo. This is the first report to elucidate the potential of IL-5Rα as an attractive MIBC target for antibody-conjugate applications.

3.
J Nat Prod ; 80(4): 879-886, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28252963

RESUMEN

Isoliquiritigenin (1) possesses a variety of biological activities in vitro. However, its poor aqueous solubility limits its use for subsequent in vivo experimentation. In order to enable the use of 1 for in vivo studies without the use of toxic carriers or cosolvents, a phosphate prodrug strategy was implemented relying on the availability of phenol groups in the molecule. In this study, a phosphate group was added to position C-4 of 1, leading to the more water-soluble prodrug 2 and its ammonium salt 3, which possesses increased stability compared to 2. Herein are reported the synthesis, characterization, solubility, and stability of phosphate prodrug 3 in biological medium in comparison to 1, as well as new results on its anti-inflammatory properties in vivo. As designed, the solubility of prodrug 3 was superior to that of the parent natural product 1 (9.6 mg/mL as opposed to 3.9 µg/mL). Prodrug 3 as an ammonium salt was also found to possess excellent stability as a solid and in aqueous solution, as opposed to its phosphoric acid precursor 2.


Asunto(s)
Chalconas/farmacología , Organofosfatos/síntesis química , Profármacos/síntesis química , Compuestos de Amonio Cuaternario/farmacología , Animales , Chalconas/química , Glycyrrhiza/química , Estructura Molecular , Organofosfatos/química , Organofosfatos/farmacología , Profármacos/química , Compuestos de Amonio Cuaternario/química , Solubilidad , Agua
4.
Mol Pharm ; 13(6): 1915-26, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27112376

RESUMEN

The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high selectivity for IL-3Rα-positive cells. In contrast, 7G3 ACs with the ability to either escape endosome entrapment or traffic to the nucleus was not superior to 7G3-ChAcNLS for increasing intracellular accumulation. Transportation of (64)Cu when complexed to 7G3-ChAcNLS also resulted in increased nuclear and intracellular radioactivity accumulation. Thus, ChAcNLS is a novel mAb functionalizing technology that demonstrates its ability to increase AC intracellular accumulation in target cells through escaping endosome entrapment coupled to nuclear trafficking.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Núcleo Celular/efectos de los fármacos , Ácido Cólico/farmacocinética , Endosomas/efectos de los fármacos , Inmunoconjugados/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Endosomas/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Señales de Localización Nuclear/metabolismo , Péptidos/metabolismo
5.
Biochem Biophys Res Commun ; 473(2): 471-5, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-26972249

RESUMEN

Miz-1 is a BTB/POZ transcription factor that contains 13C2H2 Zinc Finger domains (ZF). Miz-1 transactivates and represses the transcription of a myriad of genes involved in many aspects of the biology of the cell. The detailed molecular interactions through which Miz-1 controls transcription, including its specific DNA binding via its ZF domains, remain to be understood and documented. In our effort to shed light into the structural biology of Miz-1, we have undertaken the determination of the structure of all its ZF and the characterization of their interactions with cognate DNA. The structure of ZF 1 to 10 have already been solved and characterized. Here, we present the structure of the synthetic Miz-1 ZF13 determined by 2D (1)H-(1)H NMR.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/química , Dedos de Zinc , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Alineación de Secuencia
6.
Antimicrob Agents Chemother ; 59(10): 6317-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248373

RESUMEN

The host response to influenza virus infection is characterized by an acute lung inflammatory response in which intense inflammatory cell recruitment, hypercytokinemia, and a high level of oxidative stress are present. The sum of these events contributes to the virus-induced lung damage that leads to high a level of morbidity and mortality in susceptible infected patients. In this context, we identified compounds that can simultaneously reduce the excessive inflammatory response and the viral replication as a strategy to treat influenza virus infection. We investigated the anti-inflammatory and antiviral potential activities of isoliquiritigenin (ILG). Interestingly, we demonstrated that ILG is a potent inhibitor of influenza virus replication in human bronchial epithelial cells (50% effective concentration [EC50] = 24.7 µM). In addition, our results showed that this molecule inhibits the expression of inflammatory cytokines induced after the infection of cells with influenza virus. We demonstrated that the anti-inflammatory activity of ILG in the context of influenza virus infection is dependent on the activation of the peroxisome proliferator-activated receptor gamma pathway. Interestingly, ILG phosphate (ILG-p)-treated mice displayed decreased lung inflammation as depicted by reduced cytokine gene expression and inflammatory cell recruitment. We also demonstrated that influenza virus-specific CD8(+) effector T cell recruitment was reduced up to 60% in the lungs of mice treated with ILG-p (10 mg/kg) compared to that in saline-treated mice. Finally, we showed that administration of ILG-p reduced lung viral titers and morbidity of mice infected with the PR8/H1N1 virus.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Chalconas/farmacología , Pulmón/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Línea Celular , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , PPAR gamma/genética , PPAR gamma/inmunología , Neumonía/inmunología , Neumonía/patología , Neumonía/virología , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
7.
Am J Physiol Lung Cell Mol Physiol ; 309(6): L543-51, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26232301

RESUMEN

The pathophysiology of acute lung injury (ALI) is well characterized, but its real-time assessment at bedside remains a challenge. When patients do not improve after 1 wk despite supportive therapies, physicians have to consider open lung biopsy (OLB) to identify the process(es) at play. Sustained inflammation and inadequate repair are often observed in this context. OLB is neither easy to perform in a critical setting nor exempt from complications. Herein, we explore intravital endoscopic confocal fluorescence microscopy (ECFM) of the lung in vivo combined with the use of fluorescent smart probe(s) activated by myeloperoxidase (MPO). MPO is a granular enzyme expressed by polymorphonuclear neutrophils (PMNs) and alveolar macrophages (AMs), catalyzing the synthesis of hypoclorous acid, a by-product of hydrogen peroxide. Activation of these probes was first validated in vitro in relevant cells (i.e., AMs and PMNs) and on MPO-non-expressing cells (as negative controls) and then tested in vivo using three rat models of ALI and real-time intravital imaging with ECFM. Semiquantitative image analyses revealed that in vivo probe-related cellular/background fluorescence was associated with corresponding enhanced lung enzymatic activity and was partly prevented by specific MPO inhibition. Additional ex vivo phenotyping was performed, confirming that fluorescent cells were neutrophil elastase(+) (PMNs) or CD68(+) (AMs). This work is a first step toward "virtual biopsy" of ALI without OLB.


Asunto(s)
Lesión Pulmonar Aguda/enzimología , Peroxidasa/metabolismo , Lesión Pulmonar Aguda/diagnóstico , Lesión Pulmonar Aguda/inmunología , Animales , Línea Celular Tumoral , Endoscopía , Colorantes Fluorescentes/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipopolisacáridos/farmacología , Macrófagos Alveolares/enzimología , Macrófagos Alveolares/inmunología , Microscopía Confocal , Neutrófilos/enzimología , Neutrófilos/inmunología , Ratas Sprague-Dawley
8.
Bioconjug Chem ; 26(3): 405-11, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25654426

RESUMEN

Arginine-rich cell penetrating peptides are short cationic peptides able to cross biological membranes despite their peptidic character. In order to optimize their penetration properties and further elucidate their mechanisms of cellular entry, these peptides have been intensively studied for the last two decades. Although several parameters are simultaneously involved in the internalization mechanism, recent studies suggest that structural modifications influence cellular internalization. Particularly, backbone rigidification, including macrocyclization, was found to enhance proteolytic stability and cellular uptake. In the present work, we describe the synthesis of macrocyclic arginine-rich cell penetrating peptides and study their cellular uptake properties using a combination of flow cytometry and confocal microscopy. By varying ring size, site of cyclization, and stereochemistry of the arginine residues, we studied their structure-uptake relationship and showed that the mode and site of cyclization as well as the stereochemistry influence cellular uptake. This study led to the identification of a hepta-arginine macrocycle as efficient as its linear nona-arginine congener to enter cells.


Asunto(s)
Membrana Celular/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Células HeLa , Humanos , Relación Estructura-Actividad
9.
Eur J Med Chem ; 80: 605-20, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24877760

RESUMEN

Staphylococcus aureus (S. aureus) is responsible for difficult-to-treat and relapsing infections and constitutes one of the most problematic pathogens due to its multiple resistances to clinically available antibiotics. Additionally, the ability of S. aureus to develop small-colony variants is associated with a reduced susceptibility to aminoglycoside antibiotics and in vivo persistence. We have recently demonstrated that tomatidine, a steroid alkaloid isolated from tomato plants, possesses anti-virulence activity against normal strains of S. aureus as well as the ability to potentiate the effect of aminoglycoside antibiotics. In addition, tomatidine has shown antibiotic activity against small-colony variants of S. aureus. We herein report the first study of the structure-activity relationship of tomatidine against S. aureus.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Tomatina/análogos & derivados , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/crecimiento & desarrollo , Relación Estructura-Actividad , Tomatina/química , Tomatina/farmacología
10.
Contrast Media Mol Imaging ; 7(3): 328-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22539403

RESUMEN

In order to target and image MMP-2 activity using optical imaging, we developed a panel of new MMP-2 probes based on Cy5 and QSY21 as fluorophore/quencher FRET partners, separated by various MMP-2 specific peptide substrates. We compared these probes for their specificity against other MMPs, their rate of activation by MMP-2 and their initial quenching.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Imagen Molecular/métodos , Sondas Moleculares , Fragmentos de Péptidos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectrometría de Masas , Metaloproteinasas de la Matriz/análisis , Metaloproteinasas de la Matriz/química
11.
Bioorg Med Chem ; 19(10): 3280-7, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21524586

RESUMEN

Galactose is the key contact site for plant AB-toxins and the human adhesion/growth-regulatory galectins. Natural anomeric extensions and 3'-substitutions enhance its reactivity, thus prompting us to test the potential of respective chemical substitutions of galactose in the quest to develop potent inhibitors. Biochemical screening of a respective glycoside library with 60 substances in a solid-phase assay was followed by examining the compounds' activity to protect cells from lectin binding. By testing 32 anomeric extensions, 18 compounds with additional 3'-substitution, three lactosides and two Lewis-type trisaccharides rather mild effects compared to the common haptenic inhibitor lactose were detected in both assays. When using trivalent glycoclusters marked enhancements with 6- to 8-fold increases were revealed for the toxin and three of four tested galectins. Since the most potent compound and also 3'-substituted thiogalactosides reduced cell growth of a human tumor line at millimolar concentrations, biocompatible substitutions and scaffolds will be required for further developments. The synthesis of suitable glycoclusters, presenting headgroups which exploit differences in ligand selection in interlectin comparison to reduce cross-reactivity, and the documented strategic combination of initial biochemical screening with cell assays are considered instrumental to advance inhibitor design.


Asunto(s)
Galactosa/química , Galactosa/farmacología , Glicoproteínas/metabolismo , Lectinas/metabolismo , Unión Proteica/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Galectinas/metabolismo , Humanos , Células Jurkat , Muérdago/química , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
12.
Bioorg Med Chem ; 16(16): 7811-23, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18674915

RESUMEN

The syntheses of glycolytically stable galactosides and lactosides have been made toward the selective inhibition of human galectins-1 and -3. Transition metal-catalyzed cross-coupling reactions were used to create carbon-carbon bond formation (Sonogashira, Suzuki, Heck, Glaser). Additionally, Hantzsch condensation was used to create novel 2-aminothiazoles which reacted with a panel of acylating and sulfonylating reagents. Moreover, dimeric galactosides and lactosides bearing triazoles, regiospecifically prepared using copper-catalyzed Huisgen azide-alkyne [1,3]-dipolar cycloaddition, provided efficient galectins-1 and -3 inhibitors. Best monovalent inhibitor among the tested series was (E)-methyl 2-phenyl-4-(beta-D-galactopyranosyl)-but-2-enoate 15 with inhibitory potency of 313 microM against galectin-1 and best dimers were bis-lactoside 68 and 75 having both inhibitory properties of 160 microM against Galectin-3.


Asunto(s)
Galactósidos/síntesis química , Galectina 1/antagonistas & inhibidores , Galectina 3/antagonistas & inhibidores , Glicósidos/síntesis química , Estabilidad de Medicamentos , Galactósidos/química , Galactósidos/farmacología , Glicósidos/química , Glicósidos/farmacología , Pruebas de Inhibición de Hemaglutinación , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...