Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 109(1): 116-27, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20002866

RESUMEN

AIMS: This work aimed to identify the molecular mechanism that allows yeast cells to survive at low pH environments such as those of bioethanol fermentation. METHODS AND RESULTS: The industrial strain JP1 cells grown at pH 2 was evaluated by microarray analysis showing that most of the genes induced at low pH were part of the general stress response (GSR). Further, an acid-tolerant yeast mutant was isolated by adaptive selection that was prone to grow at low pH in inorganic but weak organic acid. It showed higher viability under acid-temperature synergistic treatment. However, it was deficient in some physiological aspects that are associated with defects in protein kinase A (PKA) pathway. Microarray analysis showed the induction of genes involved in inhibition of RNA and protein synthesis. CONCLUSIONS: The results point out that low pH activates GSR, mainly heat shock response, that is important for long-term cell survival and suggest that a fine regulatory PKA-dependent mechanism that might affect cell cycle in order to acquire tolerance to acid environment. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings might guide the construction of a high-fermentative stress-tolerant industrial yeast strain that can be used in complex industrial fermentation processes.


Asunto(s)
Ácidos/metabolismo , Fermentación , Microbiología Industrial , Saccharomyces cerevisiae/fisiología , Adaptación Fisiológica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Concentración de Iones de Hidrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
2.
FEBS Lett ; 378(1): 32-6, 1996 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-8549797

RESUMEN

Conidiospore germlings of Neurospora crassa submitted to a heat shock at 45 degrees C accumulate trehalose and degrade glycogen. The opposite occurs upon reincubation at a physiologic temperature (30 degrees C). These observations suggest a temperature-dependent mechanism for the preferential synthesis of one or the other sugar reserve. Here we show that concomitant with these shifts of temperature, occurred reversible changes in the activities of glycogen synthase and phosphorylase. Glycogen synthase was inactivated at 45 degrees C while phosphorylase was activated. The reverse was true when the cells were shifted back to 30 degrees C. Addition of cycloheximide did not prevent the reversible enzymatic changes, which remained stable after gel filtration. Apparently, the effects of temperature shifts occurred at the level of reversible covalent enzymatic modifications. Trehalose-6-phosphate synthase properties were also affected by temperature. For instance, the enzyme was less sensitive to in vitro inhibition by inorganic phosphate at 50 degrees C than at 30 degrees C. Fructose-6-phosphate partially relieved the inhibitory effect of phosphate at 30 degrees C but not at 50 degrees C. These effects of the assay temperature, inorganic phosphate, and fructose-6-phosphate, on trehalose-6-phosphate synthase activity, were more evident for crude extracts obtained from heat-shocked cells. Altogether, these results may contribute to explain the preferential accumulation of trehalose 45 degrees C, or that of glycogen at 30 degrees C.


Asunto(s)
Glucosiltransferasas/metabolismo , Glucógeno Sintasa/metabolismo , Calor , Neurospora crassa/enzimología , Fosforilasas/metabolismo , Cicloheximida/farmacología , Fructosafosfatos/farmacología , Glucógeno/metabolismo , Fosfatos/farmacología , Trehalosa/metabolismo
3.
Biochim Biophys Acta ; 1245(3): 339-47, 1995 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-8541310

RESUMEN

The effects of temperature shifts on the metabolism of trehalose in Neurospora crassa were studied in conidiospore germlings of a wild type strain, and of a mutant (tre), deficient in the activity of periplasmic trehalase. When the temperature of the medium was raised from 30 degrees C to 45 degrees C both strains accumulated trehalose, either in media supplemented with glucose or with glycerol as carbon sources. The profiles of glycolysis metabolites suggested that at 45 degrees C glycolysis was inhibited at the level of the phosphofructokinase-1 reaction, while that of fructose-1,6-bisphosphatase was active, thus explaining how the flux of carbon from glucose or glycerol was channeled to trehalose synthesis at that temperature. This assumption was also supported by the changes in levels of fructose-2,6-bisphosphate, which dropped during the incubation at 45 degrees C. The opposite phenomena were observed when the cultures were reincubated at 30 degrees C and glycolysis was strongly activated. Surprisingly, the intracellular pool of trehalose of the mutant decreased after reincubation at 30 degrees C at the same rate observed for the wild type (about 25.0 nmol/min per mg protein) despite its low trehalase activity (about 5.0 nmol/min per mg protein). Labeling experiments using [U-14C]-glucose demonstrated that both the wild type and the mutant metabolized internally the trehalose pool, without detectable leakage of glucose or trehalose into the external medium. Cells submitted to heat shock in glycerol-supplemented medium and resuspended at 30 degrees in the absence of an exogenous carbon source and in the presence of the glycolysis inhibitor 2-deoxyglucose accumulated high levels of free intracellular glucose, indicating that trehalose was hydrolysed internally. This suggested the existence of a cytosolic regulatory trehalase in Neurospora crassa, but all efforts to detect such activity in cell extracts have been unsuccessful so far. Altogether, these results argued against the participation of the periplasmic trehalase of N. crassa in the catabolism of intracellular trehalose. They are also conflictant with the enzyme/substrate decompartmentation hypothesis, earlier suggested as a way of explaining the mobilization of endogenous trehalose reserves accumulated in fungal spores (reviewed in Thevelein 1984, Microbiol. Rev. 48, 42-59).


Asunto(s)
Neurospora crassa/metabolismo , Trehalosa/metabolismo , Calor , Mutación , Neurospora crassa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA