Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079374

RESUMEN

Tar spot, a disease caused by the ascomycete fungal pathogen Phyllachora maydis, is considered one of the most significant yield-limiting diseases of maize (Zea mays L.) within the United States. P. maydis may also be found in association with other fungi, forming a disease complex which is thought to result in the characteristic fish eye lesions. Understanding how P. maydis colonizes maize leaf cells is essential for developing effective disease control strategies. Here, we used histological approaches to elucidate how P. maydis infects and multiplies within susceptible maize leaves. We collected tar spot-infected maize leaf samples from four different fields in northern Indiana at three different time points during the growing season. Samples were chemically fixed and paraffin-embedded for high-resolution light and scanning electron microscopy. We observed a consistent pattern of disease progression in independent leaf samples collected across different geographical regions. Each stroma contained a central pycnidium that produced asexual spores. Perithecia with sexual spores developed in the stomatal chambers adjacent to the pycnidium, and a cap of spores formed over the stroma. P. maydis reproductive structures formed around but not within the vasculature. We observed P. maydis associated with two additional fungi, one of which is likely a member of the Paraphaeosphaeria genus; the other is an unknown fungi. Our data provide fundamental insights into how this pathogen colonizes and spreads within maize leaves. This knowledge can inform new approaches to managing tar spot, which could help mitigate the significant economic losses caused by this disease.

2.
Phytopathology ; 113(6): 975-984, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36515656

RESUMEN

Globalization has made agricultural commodities more accessible, available, and affordable. However, their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. The results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.


Asunto(s)
Enfermedades de las Plantas , Xanthomonas , Fitomejoramiento , Xanthomonas/fisiología , Secuenciación Completa del Genoma , Brotes de Enfermedades , Plantas/genética , Genoma Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...