Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39040171

RESUMEN

Background: Prostate cancer (PCa) is among the most common cancers in men and its diagnosis requires the histopathological evaluation of biopsies by human experts. While several recent artificial intelligence-based (AI) approaches have reached human expert-level PCa grading, they often display significantly reduced performance on external datasets. This reduced performance can be caused by variations in sample preparation, for instance the staining protocol, section thickness, or scanner used. Another limiting factor of contemporary AI-based PCa grading is the prediction of ISUP grades, which leads to the perpetuation of human annotation errors. Methods: We developed the prostate cancer aggressiveness index (PCAI), an AI-based PCa detection and grading framework that is trained on objective patient outcome, rather than subjective ISUP grades. We designed PCAI as a clinical application, containing algorithmic modules that offer robustness to data variation, medical interpretability, and a measure of prediction confidence. To train and evaluate PCAI, we generated a multicentric, retrospective, observational trial consisting of six cohorts with 25,591 patients, 83,864 images, and 5 years of median follow-up from 5 different centers and 3 countries. This includes a high-variance dataset of 8,157 patients and 28,236 images with variations in sample thickness, staining protocol, and scanner, allowing for the systematic evaluation and optimization of model robustness to data variation. The performance of PCAI was assessed on three external test cohorts from two countries, comprising 2,255 patients and 9,437 images. Findings: Using our high-variance datasets, we show how differences in sample processing, particularly slide thickness and staining time, significantly reduce the performance of AI-based PCa grading by up to 6.2 percentage points in the concordance index (C-index). We show how a select set of algorithmic improvements, including domain adversarial training, conferred robustness to data variation, interpretability, and a measure of credibility to PCAI. These changes lead to significant prediction improvement across two biopsy cohorts and one TMA cohort, systematically exceeding expert ISUP grading in C-index and AUROC by up to 22 percentage points. Interpretation: Data variation poses serious risks for AI-based histopathological PCa grading, even when models are trained on large datasets. Algorithmic improvements for model robustness, interpretability, credibility, and training on high-variance data as well as outcome-based severity prediction gives rise to robust models with above ISUP-level PCa grading performance.

2.
Sci Immunol ; 9(96): eadd6774, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875317

RESUMEN

Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.


Asunto(s)
Análisis de la Célula Individual , Células Th17 , Animales , Humanos , Ratones , Células Th17/inmunología , Glomerulonefritis/inmunología , Glomerulonefritis/genética , Plasticidad de la Célula/inmunología , Plasticidad de la Célula/genética , Riñón/inmunología , Riñón/patología , Ratones Endogámicos C57BL , Sistemas CRISPR-Cas , Colitis/inmunología , Colitis/genética , Inflamación/inmunología , Inflamación/genética , Femenino , Masculino , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología
3.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849340

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas , Ratones Transgénicos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Humanos , Femenino , Animales , Masculino , Ratones , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Piridonas/farmacología , Piridonas/uso terapéutico , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Corteza Prefrontal/metabolismo , Transcriptoma , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Persona de Mediana Edad , MicroARNs/genética , MicroARNs/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Caracteres Sexuales , Anciano , Factores Sexuales , Pirimidinonas
4.
Nat Med ; 30(6): 1622-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760585

RESUMEN

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.


Asunto(s)
Neoplasias Encefálicas , Epigénesis Genética , Glioma , Humanos , Pronóstico , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Animales , Ratones , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Persona de Mediana Edad , Neuronas/patología , Neuronas/metabolismo , Adulto , Análisis de la Célula Individual , Línea Celular Tumoral , Transcriptoma , Clasificación del Tumor
5.
Genome Biol ; 25(1): 112, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689377

RESUMEN

Cell deconvolution is the estimation of cell type fractions and cell type-specific gene expression from mixed data. An unmet challenge in cell deconvolution is the scarcity of realistic training data and the domain shift often observed in synthetic training data. Here, we show that two novel deep neural networks with simultaneous consistency regularization of the target and training domains significantly improve deconvolution performance. Our algorithm, DISSECT, outperforms competing algorithms in cell fraction and gene expression estimation by up to 14 percentage points. DISSECT can be easily adapted to other biomedical data types, as exemplified by our proteomic deconvolution experiments.


Asunto(s)
Algoritmos , Humanos , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Aprendizaje Profundo , Redes Neurales de la Computación
6.
World J Pediatr ; 20(5): 481-495, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38261172

RESUMEN

BACKGROUND: Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma. METHODS: Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model development and validation, study participants were randomly divided into a training and a testing group, respectively, by the employed algorithm. RESULTS: Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as well as the risk of early-onset asthma. The models' R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel predictors, such as ultrasound-monitored fetal lung growth. CONCLUSION: Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and asthma.


Asunto(s)
Asma , Desarrollo Fetal , Pulmón , Infecciones del Sistema Respiratorio , Ultrasonografía Prenatal , Humanos , Asma/epidemiología , Femenino , Infecciones del Sistema Respiratorio/diagnóstico por imagen , Infecciones del Sistema Respiratorio/epidemiología , Embarazo , Masculino , Pulmón/diagnóstico por imagen , Preescolar , Medición de Riesgo , Lactante , Valor Predictivo de las Pruebas , Aprendizaje Automático , Adulto , Recién Nacido , Estudios de Cohortes , Factores de Riesgo
7.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244080

RESUMEN

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Metilación de ADN , Recurrencia Local de Neoplasia/genética , Análisis de Supervivencia
8.
Front Immunol ; 14: 1279245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179044

RESUMEN

Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.


Asunto(s)
Interferón Tipo I , Absceso Hepático Amebiano , Humanos , Masculino , Femenino , Ratones , Animales , Neutrófilos , Testosterona/farmacología , Interferón gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA