Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(24): e2221826120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276425

RESUMEN

Thousands of insect species have been introduced outside of their native ranges, and some of them strongly impact ecosystems and human societies. Because a large fraction of insects feed on or are associated with plants, nonnative plants provide habitat and resources for invading insects, thereby facilitating their establishment. Furthermore, plant imports represent one of the main pathways for accidental nonnative insect introductions. Here, we tested the hypothesis that plant invasions precede and promote insect invasions. We found that geographical variation in current nonnative insect flows was best explained by nonnative plant flows dating back to 1900 rather than by more recent plant flows. Interestingly, nonnative plant flows were a better predictor of insect invasions than potentially confounding socioeconomic variables. Based on the observed time lag between plant and insect invasions, we estimated that the global insect invasion debt consists of 3,442 region-level introductions, representing a potential increase of 35% of insect invasions. This debt was most important in the Afrotropics, the Neotropics, and Indomalaya, where we expect a 10 to 20-fold increase in discoveries of new nonnative insect species. Overall, our results highlight the strong link between plant and insect invasions and show that limiting the spread of nonnative plants might be key to preventing future invasions of both plants and insects.


Asunto(s)
Insectos , Especies Introducidas , Animales , Plantas
2.
BMC Biol ; 19(1): 241, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34749730

RESUMEN

BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.


Asunto(s)
Escarabajos , Gorgojos , Animales , Comunicación Celular , Elementos Transponibles de ADN/genética , Grano Comestible , Humanos , Gorgojos/genética
3.
Ecol Lett ; 24(11): 2418-2426, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34420251

RESUMEN

Globalisation has facilitated the spread of alien species, and some of them have significant impacts on biodiversity and human societies. It is commonly thought that biological invasions have accelerated continuously over the last centuries, following increasing global trade. However, the world experienced two distinct waves of globalisation (~1820-1914, 1960-present), and it remains unclear whether these two waves have influenced invasion dynamics of many species. To test this, we built a statistical model that accounted for temporal variations in sampling effort. We found that insect and plant invasion rates did not continuously increase over the past centuries but greatly fluctuated following the two globalisation waves. Our findings challenge the idea of a continuous acceleration of alien species introductions and highlight the association between temporal variations in trade openness and biological invasion dynamics. More generally, this emphasises the urgency of better understanding the subtleties of socio-economic drivers to improve predictions of future invasions.


Asunto(s)
Insectos , Especies Introducidas , Plantas , Animales , Biodiversidad , Predicción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...