Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Ecol ; 32(12): 3060-3075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36872057

RESUMEN

Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the carbonic anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.


Asunto(s)
Evolución Biológica , Vertebrados , Animales , RNA-Seq , Síndrome , Distribución Animal
2.
Ecol Evol ; 13(2): e9819, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36789332

RESUMEN

Studies of parasites in wild animal populations often rely on molecular methods to both detect and quantify infections. However, method accuracy is likely to be influenced by the sampling approach taken prior to nucleic acid extraction. Avian Haemosporidia are studied primarily through the screening of host blood, and a range of storage mediums are available for the short- to long-term preservation of samples. Previous research has suggested that storage medium choice may impact the accuracy of PCR-based parasite detection, however, this relationship has never been explicitly tested and may be exacerbated by the duration of sample storage. These considerations could also be especially critical for sensitive molecular methods used to quantify infection (qPCR). To test the effect of storage medium and duration on Plasmodium detection and quantification, we split blood samples collected from wild birds across three medium types (filter paper, Queen's lysis buffer, and 96% ethanol) and carried out DNA extractions at five time points (1, 6, 12, 24, and 36 months post-sampling). First, we found variation in DNA yield obtained from blood samples dependent on their storage medium which had subsequent negative impacts on both detection and estimates of Plasmodium copy number. Second, we found that detection accuracy (incidence of true positives) was highest for filter-paper-stored samples (97%), while accuracy for ethanol and Queen's lysis buffer-stored samples was influenced by either storage duration or extraction yield, respectively. Lastly, longer storage durations were associated with decreased copy number estimates across all storage mediums; equating to a 58% reduction between the first- and third-year post-sampling for lysis-stored samples. These results raise questions regarding the utility of standardizing samples by dilution, while also illustrating the critical importance of considering storage approaches in studies of Haemosporidia comparing samples subjected to different storage regimes and/or stored for varying lengths of time.

3.
Nature ; 598(7882): 652-656, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646009

RESUMEN

Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.


Asunto(s)
Lepra/veterinaria , Pan troglodytes/microbiología , Animales , Autopsia/veterinaria , Côte d'Ivoire , Heces/microbiología , Genotipo , Guinea Bissau , Humanos , Lepra/microbiología , Mycobacterium leprae/genética , Mycobacterium leprae/aislamiento & purificación , Filogenia
4.
Sci Rep ; 11(1): 8209, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859241

RESUMEN

Quantifying variation in the ability to fight infection among free-living hosts is challenging and often constrained to one or a few measures of immune activity. While such measures are typically taken to reflect host resistance, they can also be shaped by pathogen effects, for example, if more virulent strains trigger more robust immune responses. Here, we test the extent to which pathogen-specific antibody levels, a commonly used measure of immunocompetence, reflect variation in host resistance versus pathogen virulence, and whether these antibodies effectively clear infection. House finches (Haemorhous mexicanus) from resistant and susceptible populations were inoculated with > 50 isolates of their novel Mycoplasma gallisepticum pathogen collected over a 20-year period during which virulence increased. Serum antibody levels were higher in finches from resistant populations and increased with year of pathogen sampling. Higher antibody levels, however, did not subsequently give rise to greater reductions in pathogen load. Our results show that antibody responses can be shaped by levels of host resistance and pathogen virulence, and do not necessarily signal immune clearance ability. While the generality of this novel finding remains unclear, particularly outside of mycoplasmas, it cautions against using antibody levels as implicit proxies for immunocompetence and/or host resistance.


Asunto(s)
Formación de Anticuerpos/fisiología , Infecciones Bacterianas/inmunología , Pinzones , Virulencia/fisiología , Animales , Infecciones Bacterianas/patología , Conducta Animal/fisiología , Enfermedades de las Aves/inmunología , Enfermedades de las Aves/microbiología , Progresión de la Enfermedad , Resistencia a la Enfermedad/inmunología , Femenino , Pinzones/inmunología , Pinzones/microbiología , Interacciones Huésped-Patógeno/inmunología , Masculino , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/inmunología , Mycoplasma gallisepticum/patogenicidad
5.
BMC Genomics ; 22(1): 204, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757428

RESUMEN

BACKGROUND: Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS: We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION: These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Anuros , Xenopus , Xenopus laevis
6.
PLoS One ; 16(3): e0237687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667220

RESUMEN

Darwin's finches are an iconic example of adaptive radiation and evolution under natural selection. Comparative genetic studies using embryos of Darwin's finches have shed light on the possible evolutionary processes underlying the speciation of this clade. Molecular identification of the sex of embryonic samples is important for such studies, where this information often cannot be inferred otherwise. We tested a fast and simple chicken embryo protocol to extract DNA from Darwin's finch embryos. In addition, we applied minor modifications to two of the previously reported PCR primer sets for CHD1, a gene used for sexing adult passerine birds. The sex of all 29 tested embryos of six species of Darwin's finches was determined successfully by PCR, using both primer sets. Next to embryos, hatchlings and fledglings are also impossible to distinguish visually. This extends to juveniles of sexually dimorphic species which are yet to moult in adult-like plumage and beak colouration. Furthermore, four species of Darwin's finches are monomorphic, males and females looking alike. Therefore, sex assessment in the field can be a source of error, especially with respect to juveniles and mature monomorphic birds outside of the mating season. We caught 567 juveniles and adults belonging to six species of Darwin's finches and only 44% had unambiguous sex-specific morphology. We sexed 363 birds by PCR: individuals sexed based on marginal sex specific morphological traits; and birds which were impossible to classify in the field. PCR revealed that for birds with marginal sex specific traits, sexing in the field produced a 13% error rate. This demonstrates that PCR based sexing can improve field studies on Darwin's finches, especially when individuals with unclear sex-related morphology are involved. The protocols used here provide an easy and reliable way to sex Darwin's finches throughout ontogeny, from embryos to adults.


Asunto(s)
Embrión no Mamífero/metabolismo , Pinzones/crecimiento & desarrollo , Procesos de Determinación del Sexo/fisiología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Femenino , Pinzones/genética , Masculino , Selección Genética
7.
Physiol Biochem Zool ; 94(2): 71-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33399516

RESUMEN

AbstractAs a major physiological mechanism involved in cellular renewal and repair, immune function is vital to the body's capacity to support tissue maintenance and organismal survival. Because immune defenses can be energetically expensive, the activities of metabolically active organs, such as the liver, are predicted to increase during infection by most pathogens. However, some pathogens are immunosuppressive, which might reduce the metabolic capacities of select organs to suppress immune response. Mycoplasma gallisepticum (MG) is a well-known immunosuppressive bacterium that infects domestic chickens and turkeys as well as songbirds. In the house finch (Haemorhous mexicanus), which is the primary host for MG among songbird species, MG infects both the respiratory system and the conjunctiva of the eye, causing conspicuous swelling. To study the effect of a systemic bacterial infection on cellular respiration and oxidative damage in the house finch, we measured mitochondrial respiration, mitochondrial membrane potential, reactive oxygen species production, and oxidative damage in the livers of house finches that were wild caught and either infected with MG, as indicated by genetic screening for the pathogen, or free of MG infection. We observed that MG-infected house finches showed significantly lower oxidative lipid and protein damage in liver tissue compared with their uninfected counterparts. Moreover, using complex II substrates, we documented a nonsignificant trend for lower state 3 respiration of liver mitochondria in MG-infected house finches compared with uninfected house finches (P=0.07). These results are consistent with the hypothesis that MG suppresses organ function in susceptible hosts.


Asunto(s)
Enfermedades de las Aves/metabolismo , Mitocondrias/metabolismo , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum , Estrés Oxidativo , Pájaros Cantores/microbiología , Animales , Enfermedades de las Aves/microbiología , Infecciones por Mycoplasma/metabolismo , Infecciones por Mycoplasma/microbiología
8.
Ecol Evol ; 11(24): 18422-18433, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003681

RESUMEN

Endemic island species face unprecedented threats, with many populations in decline or at risk of extinction. One important threat is the introduction of novel and potentially devastating diseases, made more pressing due to accelerating global connectivity, urban development, and climatic changes. In the Galápagos archipelago two important wildlife diseases: avian pox (Avipoxvirus spp.) and avian malaria (Plasmodium spp. and related Haemosporidia) challenge endemic species. San Cristóbal island has seen a paucity of disease surveillance in avian populations, despite the island's connectedness to the continent and the wider archipelago. To survey prevalence and better understand the dynamics of these two diseases on San Cristóbal, we captured 1205 birds of 11 species on the island between 2016 and 2020. Study sites included urban and rural lowland localities as well as rural highland sites in 2019. Of 995 blood samples screened for avian haemosporidia, none tested positive for infection. In contrast, evidence of past and active pox infection was observed in 97 birds and identified as strains Gal1 and Gal2. Active pox prevalence differed significantly with contemporary climatic conditions, being highest during El Niño events (~11% in 2016 and in 2019 versus <1% in the La Niña year of 2018). Pox prevalence was also higher at urban sites than rural (11% to 4%, in 2019) and prevalence varied between host species, ranging from 12% in medium ground finches (Geospiza fortis) to 4% in Yellow Warblers (Setophaga petechial aureola). In the most common infected species (Small Ground Finch: Geospiza fuliginosa), birds recovered from pox had significantly longer wings, which may suggest a selective cost to infection. These results illustrate the threat future climate changes and urbanization may present in influencing disease dynamics in the Galápagos, while also highlighting unknowns regarding species-specific susceptibilities to avian pox and the transmission dynamics facilitating outbreaks within these iconic species.

10.
Evol Lett ; 4(6): 491-501, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312685

RESUMEN

The virulence-transmission trade-off hypothesis has provided a dominant theoretical basis for predicting pathogen virulence evolution, but empirical tests are rare, particularly at pathogen emergence. The central prediction of this hypothesis is that pathogen fitness is maximized at intermediate virulence due to a trade-off between infection duration and transmission rate. However, obtaining sufficient numbers of pathogen isolates of contrasting virulence to test the shape of relationships between key pathogen traits, and doing so without the confounds of evolved host protective immunity (as expected at emergence), is challenging. Here, we inoculated 55 isolates of the bacterial pathogen, Mycoplasma gallisepticum, into non-resistant house finches (Haemorhous mexicanus) from populations that have never been exposed to the disease. Isolates were collected over a 20-year period from outbreak in disease-exposed populations of house finches and vary markedly in virulence. We found a positive linear relationship between pathogen virulence and transmission rate to an uninfected sentinel, supporting the core assumption of the trade-off hypothesis. Further, in support of the key prediction, there was no evidence for directional selection on a quantitative proxy of pathogen virulence and, instead, isolates of intermediate virulence were fittest. Surprisingly, however, the positive relationship between virulence and transmission rate was not underpinned by variation in pathogen load or replication rate as is commonly assumed. Our results indicate that selection favors pathogens of intermediate virulence at disease emergence in a novel host species, even when virulence and transmission are not linked to pathogen load.

11.
EMBO Rep ; 21(9): e51374, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32864788

RESUMEN

Evolutionary biology is key to potentially predicting virulence and transmission after a pathogen jumps into a new host species. This knowledge would be valuable for designing public health strategies.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Interacciones Huésped-Patógeno/genética , Humanos , Modelos Biológicos , Virulencia/genética
12.
Ecol Evol ; 10(12): 6097-6111, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607216

RESUMEN

Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co-occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co-occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three-year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host-specific epidemiology, which is likely to complicate predictions of host-parasite co-evolution.

13.
Sci Rep ; 10(1): 6779, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32322086

RESUMEN

Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.


Asunto(s)
Pinzones/inmunología , Especificidad del Huésped/inmunología , Mycoplasma gallisepticum/inmunología , Aves de Corral/inmunología , Animales , Línea Celular , Pinzones/microbiología , Interacciones Microbiota-Huesped/inmunología , Infecciones por Mycoplasma/inmunología , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/fisiología , Aves de Corral/microbiología
14.
Philos Trans R Soc Lond B Biol Sci ; 374(1782): 20180328, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31401968

RESUMEN

Our understanding of the ecological and evolutionary context of novel infections is largely based on viral diseases, even though bacterial pathogens may display key differences in the processes underlying their emergence. For instance, host-shift speciation, in which the jump of a pathogen into a novel host species is followed by the specialization on that host and the loss of infectivity of previous host(s), is commonly observed in viruses, but less often in bacteria. Here, we suggest that the extent to which pathogens evolve host generalism or specialism following a jump into a novel host will depend on their level of adaptation to dealing with different environments, their rates of molecular evolution and their ability to recombine. We then explore these hypotheses using a formal model and show that the high levels of phenotypic plasticity, low rates of evolution and the ability to recombine typical of bacterial pathogens should reduce their propensity to specialize on novel hosts. Novel bacterial infections may therefore be more likely to result in transient spillovers or increased host ranges than in host shifts. Finally, consistent with our predictions, we show that, in two unusual cases of contemporary bacterial host shifts, the bacterial pathogens both have small genomes and rapid rates of substitution. Further tests are required across a greater number of emerging pathogens to assess the validity of our hypotheses. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Evolución Biológica , Especificidad del Huésped , Evolución Molecular , Modelos Teóricos
15.
Proc Natl Acad Sci U S A ; 116(34): 16927-16932, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371501

RESUMEN

Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host-pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.


Asunto(s)
Bacterias , Infecciones Bacterianas , Evolución Biológica , Enfermedades de las Aves/microbiología , Resistencia a la Enfermedad , Modelos Biológicos , Pájaros Cantores/microbiología , Animales , Bacterias/crecimiento & desarrollo , Bacterias/patogenicidad , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/veterinaria , América del Norte , Factores de Virulencia/metabolismo
16.
Conserv Physiol ; 7(1): coz019, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139411

RESUMEN

Climate change is in part responsible for the 70% decline in amphibian species numbers worldwide. Although temperature is expected to impact whole-organism performance in ectotherms, reversible thermal acclimation has been suggested as a mechanism that may buffer responses to abrupt temperature changes. Here, we test for an effect of acclimation on locomotor performance traits (jump force and stamina) in adults of two predominantly aquatic and closely related frog species from different climatic regions, Xenopus tropicalis (tropical) and Xenopus laevis (temperate). We find significant effects of acclimation temperature on exertion capacity and for jump force in X. tropicalis but no effect of acclimation temperature on burst performance in X. laevis. Our results suggest that the two locomotor performance traits measured are differentially impacted by acclimation temperature in X. tropicalis. Our results further support the hypothesis that lower-latitude ectotherms might have greater acclimation capacity than high-latitude ones. Finally, our results highlight the importance of investigating multiple performance traits when evaluating how animals may cope with changes in temperature. Further work is required to evaluate the potential for acclimation in mitigating the negative impacts of climate change on amphibian populations.

17.
Biol Lett ; 15(5): 20190190, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31113307

RESUMEN

Pathogens are potent selective forces that can reduce the fitness of their hosts. While studies of the short-term energetic costs of infections are accumulating, the long-term costs have only just started to be investigated. Such delayed costs may, at least in part, be mediated by telomere erosion. This hypothesis is supported by experimental investigations conducted on laboratory animals which show that infection accelerates telomere erosion in immune cells. However, the generalizability of such findings to natural animal populations and to humans remains debatable. First, laboratory animals typically display long telomeres relative to their wild counterparts. Second, unlike humans and most wild animals, laboratory small-bodied mammals are capable of telomerase-based telomere maintenance throughout life. Third, the effect of infections on telomere shortening and ageing has only been studied using single pathogen infections, yet hosts are often simultaneously confronted with a range of pathogens in the wild. Thus, the cost of an infection in terms of telomere-shortening-related ageing in natural animal populations is likely to be strongly underestimated. Here, we discuss how investigations into the links between infection, immune response and tissue ageing are now required to improve our understanding of the long-term impact of disease.


Asunto(s)
Telomerasa , Acortamiento del Telómero , Envejecimiento , Animales , Humanos , Mamíferos , Telómero
18.
Curr Biol ; 28(18): 2978-2983.e5, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30197084

RESUMEN

Host-pathogen coevolution is assumed to play a key role in eco-evolutionary processes, including epidemiological dynamics and the evolution of sexual reproduction [1-4]. Despite this, direct evidence for host-pathogen coevolution is exceptional [5-7], particularly in vertebrate hosts. Indeed, although vertebrate hosts have been shown to evolve in response to pathogens or vice versa [8-12], there is little evidence for the necessary reciprocal changes in the success of both antagonists over time [13]. Here, we generate a time-shift experiment to demonstrate adaptive, reciprocal changes in North American house finches (Haemorhous mexicanus) and their emerging bacterial pathogen, Mycoplasma gallisepticum [14-16]. Our experimental design is made possible by the existence of disease-exposed and unexposed finch populations, which were known to exhibit equivalent responses to experimental inoculation until the recent spread of genetic resistance in the former [14, 17]. Whereas inoculations with pathogen isolates from epidemic outbreak caused comparable sub-lethal eye swelling in hosts from exposed (hereafter adapted) and unexposed (hereafter ancestral) populations, inoculations with isolates sampled after the spread of resistance were threefold more likely to cause lethal symptoms in hosts from ancestral populations. Similarly, the probability that pathogens successfully established an infection in the primary host and, before inducing death, transmitted to an uninfected sentinel was highest when recent isolates were inoculated in hosts from ancestral populations and lowest when early isolates were inoculated in hosts from adapted populations. Our results demonstrate antagonistic host-pathogen coevolution, with hosts and pathogens displaying increased resistance and virulence in response to each other over time.


Asunto(s)
Enfermedades de las Aves/microbiología , Resistencia a la Enfermedad , Pinzones , Interacciones Huésped-Patógeno , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/fisiología , Mycoplasma gallisepticum/patogenicidad , Alabama , Distribución Animal , Animales , Arizona , Coevolución Biológica , Infecciones por Mycoplasma/microbiología , Virulencia
19.
J Evol Biol ; 31(11): 1704-1714, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30107064

RESUMEN

Emergent infectious diseases can have a devastating impact on host populations. The high selective pressures on both the hosts and the pathogens frequently lead to rapid adaptations not only in pathogen virulence but also host resistance following an initial outbreak. However, it is often unclear whether hosts will evolve to avoid infection-associated fitness costs by preventing the establishment of infection (here referred to as qualitative resistance) or by limiting its deleterious effects through immune functioning (here referred to as quantitative resistance). Equally, the evolutionary repercussions these different resistance mechanisms have for the pathogen are often unknown. Here, we investigate the co-evolutionary dynamics of pathogen virulence and host resistance following the epizootic outbreak of the highly pathogenic bacterium Mycoplasma gallisepticum in North American house finches (Haemorhous mexicanus). Using an evolutionary modelling approach and with a specific emphasis on the evolved resistance trait, we demonstrate that the rapid increase in the frequency of resistant birds following the outbreak is indicative of strong selection pressure to reduce infection-associated mortality. This, in turn, created the ecological conditions that selected for increased bacterial virulence. Our results thus suggest that quantitative host resistance was the key factor underlying the evolutionary interactions in this natural host-pathogen system.


Asunto(s)
Enfermedades de las Aves/microbiología , Pinzones , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/patogenicidad , Animales , Evolución Biológica , Modelos Biológicos , Infecciones por Mycoplasma/microbiología , Mycoplasma gallisepticum/genética , Virulencia/genética
20.
Avian Dis ; 62(1): 14-17, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29620468

RESUMEN

In 1994, an endemic poultry pathogen, Mycoplasma gallisepticum (MG), was identified as the causative agent of a novel disease in house finches ( Haemorhous mexicanus). After an initial outbreak in Maryland, MG spread rapidly throughout eastern North American populations of house finches. Subsequently, MG spread slowly through the northern interior of North America and then into the Pacific Northwest, finally reaching California in 2006. Until 2009, there were no reports of MG in the southwestern United States east of California. In August 2011, after reports of house finches displaying conjunctivitis characteristic of MG infection in Arizona, we trapped house finches at bird feeders in central Arizona (Tempe) and southern Arizona (Tucson and Green Valley) to assay for MG infection. Upon capture, we noted whether birds exhibited conjunctivitis, and we collected choanal swabs to test for the presence of MG DNA using PCR. We detected MG in finches captured from Green Valley (in ∼12% of birds captured), but not in finches from Tucson or Tempe. Based on resampling of house finches at these sites in July 2014, we suggest that central Arizona finches likely remain unexposed to MG. We also suggest that low urban connectivity between arid habitats of southern and central Arizona or a reduction in the prevalence of MG after its initial arrival in Arizona may be limiting the spread of MG from south to north in Arizona. In addition, the observed conjunctivitis-like signs in house finches that were negative for MG by PCR may be caused primarily by avian pox virus.


Asunto(s)
Enfermedades de las Aves/epidemiología , Pinzones , Infecciones por Mycoplasma/veterinaria , Mycoplasma gallisepticum/aislamiento & purificación , Animales , Arizona/epidemiología , Enfermedades de las Aves/microbiología , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/microbiología , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...