Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 12(9): e0183547, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902878

RESUMEN

Temperature plays a key role in outdoor industrial cultivation of microalgae. Improving the thermal tolerance of microalgae to both daily and seasonal temperature fluctuations can thus contribute to increase their annual productivity. A long term selection experiment was carried out to increase the thermal niche (temperature range for which the growth is possible) of a neutral lipid overproducing strain of Tisochrysis lutea. The experimental protocol consisted to submit cells to daily variations of temperature for 7 months. The stress intensity, defined as the amplitude of daily temperature variations, was progressively increased along successive selection cycles. Only the amplitude of the temperature variations were increased, the daily average temperature was kept constant along the experiment. This protocol resulted in a thermal niche increase by 3°C (+16.5%), with an enhancement by 9% of the maximal growth rate. The selection process also affected T. lutea physiology, with a feature generally observed for 'cold-temperature' type of adaptation. The amount of total and neutral lipids was significantly increased, and eventually productivity was increased by 34%. This seven month selection experiment, carried out in a highly dynamic environment, challenges some of the hypotheses classically advanced to explain the temperature response of microalgae.


Asunto(s)
Aclimatación/fisiología , Microalgas/crecimiento & desarrollo , Selección Genética , Temperatura , Adaptación Fisiológica/fisiología , Animales , Acuicultura/métodos , Ambiente , Metabolismo de los Lípidos , Microalgas/metabolismo
2.
Biotechnol Biofuels ; 10: 136, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559927

RESUMEN

BACKGROUND: Culture collapse due to high temperatures can significantly impact the profitability of outdoor algal cultivation systems. The objective of this study was to model for the first time the impact of high temperatures on algal activity and viability. RESULTS: Viability measurements on Dunaliella salina cultures were based on cytometry with two fluorescent markers (erythrosine and fluorescein di-acetate), and photosynthetic activity was measured by Pulse Amplitude Modulation (PAM) fluorometry. Kinetic studies revealed that viability and activity losses during exposure to high temperatures could be described by a Weibull model. Both mortality and activity were shown to be functions of the thermal dose received by the algae, defined as the product of duration of exposure to high temperatures and an exponential function of temperature. Simulations at five climatic locations revealed that culture collapse due to high temperatures could impact productivity of D. salina in non-temperature-controlled outdoor photobioreactors by 35 and 40% in arid and Mediterranean climates, respectively. CONCLUSIONS: The model developed in this study can be used to forecast the impact of high temperatures on algal biofuel productivity. When coupled with models predicting the temperature of outdoor cultivation systems, this model can also be used to select the best combination of location, system geometry, and algal species to minimize the risks of culture collapse and therefore maximize biofuel productivity.

3.
Biotechnol Biofuels ; 10: 25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163782

RESUMEN

BACKGROUND: Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina, it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. RESULTS: Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina. A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. CONCLUSIONS: Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.

4.
Biotechnol Biofuels ; 8: 42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25788982

RESUMEN

Microalgae are currently emerging as one of the most promising alternative sources for the next generation of food, feed, cosmetics and renewable energy in the form of biofuel. Microalgae constitute a diverse group of microorganisms with advantages like fast and efficient growth. In addition, they do not compete for arable land and offer very high lipid yield potential. Major challenges for the development of this resource are to select lipid-rich strains using high-throughput staining for neutral lipid content in microalgae species. For this purpose, the fluorescent dyes most commonly used to quantify lipids are Nile red and BODIPY 505/515. Their fluorescent staining for lipids offers a rapid and inexpensive analysis tool to measure neutral lipid content, avoiding time-consuming and costly gravimetric analysis. This review collates and presents recent advances in algal lipid staining and focuses on Nile red and BODIPY 505/515 staining characteristics. The available literature addresses the limitations of fluorescent dyes under certain conditions, such as spectral properties, dye concentrations, cell concentrations, temperature and incubation duration. Moreover, the overall conclusion of the present review study gives limitations on the use of fluorochrome for screening of lipid-rich microalgae species and suggests improved protocols for staining recalcitrant microalgae and recommendations for the staining quantification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...