Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Adv Sci (Weinh) ; 10(31): e2301499, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37731092

RESUMEN

Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor ß (TGFß) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Organoides/metabolismo
2.
Am J Physiol Endocrinol Metab ; 321(3): E325-E337, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34250814

RESUMEN

The number of older obese adults is increasing worldwide. Whether obese adults show similar health benefits in response to lifestyle interventions at different ages is unknown. The study enrolled 25 obese men (body mass index: 31-39 kg/m2) in two arms according to age (30-40 and 60-70 yr old). Participants underwent an 8-wk intervention with moderate calorie restriction (∼20% below individual energy requirements) and supervised endurance training resulting in ∼5% weight loss. Body composition was measured using dual energy X-ray absorptiometry. Insulin sensitivity was assessed during a hypersinsulinemic-euglycemic clamp. Cardiometabolic profile was derived from blood parameters. Subcutaneous fat and vastus lateralis muscle biopsies were used for ex vivo analyses. Two-way repeated-measure ANOVA and linear mixed models were used to evaluate the response to lifestyle intervention and comparison between the two groups. Fat mass was decreased and bone mass was preserved in the two groups after intervention. Muscle mass decreased significantly in older obese men. Cardiovascular risk (Framingham risk score, plasma triglyceride, and cholesterol) and insulin sensitivity were greatly improved to a similar extent in the two age groups after intervention. Changes in adipose tissue and skeletal muscle transcriptomes were marginal. Analysis of the differential response to the lifestyle intervention showed tenuous differences between age groups. These data suggest that lifestyle intervention combining calorie restriction and exercise shows similar beneficial effects on cardiometabolic risk and insulin sensitivity in younger and older obese men. However, attention must be paid to potential loss of muscle mass in response to weight loss in older obese men.NEW & NOTEWORTHY Rise in obesity and aging worldwide are major trends of critical importance in public health. This study addresses a current challenge in obesity management. Do older obese adults respond differently to a lifestyle intervention composed of moderate calorie restriction and supervised physical activity than younger ones? The main conclusion of the study is that older and younger obese men similarly benefit from the intervention in terms of cardiometabolic risk.


Asunto(s)
Adaptación Fisiológica , Sistema Cardiovascular/metabolismo , Estilo de Vida , Obesidad/metabolismo , Programas de Reducción de Peso , Adulto , Factores de Edad , Anciano , Composición Corporal , Humanos , Masculino , Persona de Mediana Edad
3.
Am J Clin Nutr ; 109(6): 1499-1510, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869115

RESUMEN

BACKGROUND: The adipose tissue (AT) is a secretory organ producing a wide variety of factors that participate in the genesis of metabolic disorders linked to excess fat mass. Weight loss improves obesity-related disorders. OBJECTIVES: Transcriptomic studies on human AT, and a combination of analyses of transcriptome and proteome profiling of conditioned media from adipocytes and stromal cells isolated from human AT, have led to the identification of apolipoprotein M (apoM) as a putative adipokine. We aimed to validate apoM as novel adipokine, investigate the relation of AT APOM expression with metabolic syndrome and insulin sensitivity, and study the regulation of its expression in AT and secretion during calorie restriction-induced weight loss. METHODS: We examined APOM mRNA level and secretion in AT from 485 individuals enrolled in 5 independent clinical trials, and in vitro in human multipotent adipose-derived stem cell adipocytes. APOM expression and secretion were measured during dieting. RESULTS: APOM was expressed in human subcutaneous and visceral AT, mainly by adipocytes. ApoM was released into circulation from AT, and plasma apoM concentrations correlate with AT APOM mRNA levels. In AT, APOM expression inversely correlated with adipocyte size, was lower in obese compared to lean individuals, and reduced in subjects with metabolic syndrome and type 2 diabetes. Regardless of fat depot, there was a positive relation between AT APOM expression and systemic insulin sensitivity, independently of fat mass and plasma HDL cholesterol. In human multipotent adipose-derived stem cell adipocytes, APOM expression was enhanced by insulin-sensitizing peroxisome proliferator-activated receptor agonists and inhibited by tumor necrosis factor α, a cytokine that causes insulin resistance. In obese individuals, calorie restriction increased AT APOM expression and secretion. CONCLUSIONS: ApoM is a novel adipokine, the expression of which is a hallmark of healthy AT and is upregulated by calorie restriction. AT apoM deserves further investigation as a potential biomarker of risk for diabetes and cardiovascular diseases.


Asunto(s)
Adipoquinas/genética , Apolipoproteínas M/genética , Obesidad/dietoterapia , Obesidad/genética , Adipocitos/metabolismo , Adipoquinas/metabolismo , Apolipoproteínas M/metabolismo , Restricción Calórica , Ensayos Clínicos como Asunto , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/metabolismo
4.
Nat Metab ; 1(1): 133-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-32694809

RESUMEN

Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPß, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.


Asunto(s)
Adipocitos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina/genética , Fluidez de la Membrana/genética , Ratones , Ratones Transgénicos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transducción de Señal
5.
Am J Clin Nutr ; 106(3): 736-746, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28793995

RESUMEN

Background: A low-calorie diet (LCD) reduces fat mass excess, improves insulin sensitivity, and alters adipose tissue (AT) gene expression, yet the relation with clinical outcomes remains unclear.Objective: We evaluated AT transcriptome alterations during an LCD and the association with weight and glycemic outcomes both at LCD termination and 6 mo after the LCD.Design: Using RNA sequencing (RNAseq), we analyzed transcriptome changes in AT from 191 obese, nondiabetic patients within a multicenter, controlled dietary intervention. Expression changes were associated with outcomes after an 8-wk LCD (800-1000 kcal/d) and 6 mo after the LCD. Results were validated by using quantitative reverse transcriptase-polymerase chain reaction in 350 subjects from the same cohort. Statistical models were constructed to classify weight maintainers or glycemic improvers.Results: With RNAseq analyses, we identified 1173 genes that were differentially expressed after the LCD, of which 350 and 33 were associated with changes in body mass index (BMI; in kg/m2) and Matsuda index values, respectively, whereas 29 genes were associated with both endpoints. Pathway analyses highlighted enrichment in lipid and glucose metabolism. Classification models were constructed to identify weight maintainers. A model based on clinical baseline variables could not achieve any classification (validation AUC: 0.50; 95% CI: 0.36, 0.64). However, clinical changes during the LCD yielded better performance of the model (AUC: 0.73; 95% CI: 0.60, 0.87]). Adding baseline expression to this model improved the performance significantly (AUC: 0.87; 95% CI: 0.77, 0.96; Delong's P = 0.012). Similar analyses were performed to classify subjects with good glycemic improvements. Baseline- and LCD-based clinical models yielded similar performance (best AUC: 0.73; 95% CI: 0.60, 0.86). The addition of expression changes during the LCD improved the performance substantially (AUC: 0.80; 95% CI: 0.69, 0.92; P = 0.058).Conclusions: This study investigated AT transcriptome alterations after an LCD in a large cohort of obese, nondiabetic patients. Gene expression combined with clinical variables enabled us to distinguish weight and glycemic responders from nonresponders. These potential biomarkers may help clinicians understand intersubject variability and better predict the success of dietary interventions. This trial was registered at clinicaltrials.gov as NCT00390637.


Asunto(s)
Tejido Adiposo/metabolismo , Glucemia/metabolismo , Restricción Calórica , Dieta Reductora , Resistencia a la Insulina , Obesidad/genética , Transcriptoma , Adulto , Área Bajo la Curva , Biomarcadores/metabolismo , Peso Corporal , Mantenimiento del Peso Corporal , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Obesidad/metabolismo , Obesidad/terapia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pérdida de Peso/genética
6.
J Clin Endocrinol Metab ; 102(8): 2751-2761, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28482007

RESUMEN

Context: Although calorie restriction has proven beneficial for weight loss, long-term weight control is variable between individuals. Objective: To identify biomarkers of successful weight control during a dietary intervention (DI). Design, Setting, and Participants: Adipose tissue (AT) transcriptomes were compared between 21 obese individuals who either maintained weight loss or regained weight during the DI. Results were validated on 310 individuals from the same study using quantitative reverse transcription polymerase chain reaction and protein levels of potential circulating biomarkers measured by enzyme-linked immunosorbent assay. Intervention: Individuals underwent 8 weeks of low-calorie diet, then 6 months of ad libitum diet. Outcome Measure: Weight changes at the end of the DI. Results: We evaluated six genes that had altered expression during DI, encode secreted proteins, and have not previously been implicated in weight control (EGFL6, FSTL3, CRYAB, TNMD, SPARC, IGFBP3), as well as genes for which baseline expression differed between those with good and poor weight control (ASPN, USP53). Changes in plasma concentrations of EGFL6, FSTL3, and CRYAB mirrored AT messenger RNA expression; all decreased during DI in individuals with good weight control. ASPN and USP53 had higher baseline expression in individuals who went on to have good weight control. Expression quantitative trait loci analysis found polymorphisms associated with expression levels of USP53 in AT. A regulatory network was identified in which transforming growth factor ß1 (TGF-ß1) was responsible for downregulation of certain genes during DI in good controllers. Interestingly, ASPN is a TGF-ß1 inhibitor. Conclusions: We found circulating biomarkers associated with weight control that could influence weight management strategies and genes that may be prognostic for successful weight control.


Asunto(s)
Restricción Calórica , Obesidad/dietoterapia , ARN Mensajero/metabolismo , Grasa Subcutánea/metabolismo , Adulto , Biomarcadores/metabolismo , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Análisis por Micromatrices , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Crecimiento Transformador beta1/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/metabolismo
7.
BMC Genomics ; 15: 395, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24885883

RESUMEN

BACKGROUND: microRNAs (miRNAs) play crucial roles in major biological processes and their deregulations are often associated with human malignancies. As such, they represent appealing candidates as targets of innovative therapies. Another interesting aspect of their biology is that they are present in various biological fluids where, advantageously, they appear to be very stable. A plethora of studies have now reported their potential as biomarkers that can be used in diagnosis, prognosis and/or theranostic issues. However, the application of circulating miRNAs in clinical practices still requires the identification of highly efficient, robust and reproducible methods for their isolation from biological samples.In that context, we performed an independent cross-comparison of three commercially available RNA extraction kits for miRNAs isolation from human blood samples (Qiagen and Norgen kits as well as the new NucleoSpin miRNAs Plasma kit from Macherey-Nagel). miRNAs were further profiled using the Taqman Low Density Array technology. RESULTS: We found that, although these 3 kits had equal performances in extracting miRNAs from peripheral blood mononuclear cells, the Macherey-Nagel kit presented several advantages when isolating miRNAs from sera. Besides, our results have indicated that, depending on the quantity of the biological samples used, the extraction procedure directly impacted on the G/C composition of the miRNAs detected. CONCLUSION: Overall, our study contributes to the definition of a reliable framework for profiling circulating miRNAs.


Asunto(s)
Leucocitos Mononucleares/metabolismo , MicroARNs/aislamiento & purificación , Juego de Reactivos para Diagnóstico , Humanos , Leucocitos Mononucleares/citología , MicroARNs/sangre , MicroARNs/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...