Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38659415

RESUMEN

Many physiological functions are regulated by free fatty acids (FFA). Recently, the discovery of FFA-specific G protein-coupled receptors (FFARs) has added to the complexity of their actions at the cellular level. The study of FFAR in cattle is still in its earliest stages focusing mainly on dairy cows. In this study, we set out to map the expression of genes encoding FFARs in 6 tissues of beef cattle. We also investigated the potential effect of dietary forage nature on FFAR gene expression. To this end, 16 purebred Charolais bulls were fed a grass silage ration or a maize silage ration (n = 8/group) with a forage/concentrate ratio close to 60:40 for 196 d. The animals were then slaughtered at 485 ±â€…42 d and liver, spleen, ileum, rectum, perirenal adipose tissue (PRAT), and Longissimus Thoracis muscle were collected. FFAR gene expression was determined by real-time quantitative PCR. Our results showed that of the five FFARs investigated, FFAR1, FFAR2, FFAR3, and GPR84 are expressed (Ct < 30) in all six tissues, whereas FFAR4 was only expressed (Ct < 30) in PRAT, ileum, and rectum. In addition, our results showed that the nature of the forage, i.e., grass silage or maize silage, had no effect on the relative abundance of FFAR in any of the tissues studied (P value > 0.05). Taken together, these results open new perspectives for studying the physiological role of these receptors in beef cattle, particularly in nutrient partitioning during growth.


Free fatty acids (FFA) are key modulators of bovine physiology. Recently, it has been discovered that some G protein-coupled receptors, termed free fatty acid receptors (FFARs), may help mediate the action of FFA at the cellular level. In humans and rodents, a growing body of evidence has shown that i) FFARs are expressed in a wide range of tissues and ii) FFARs are involved in the regulation of major FFA-dependent physiological processes (inflammation, feed intake, insulin release, etc.). In cattle, information on FFAR expression and function in tissues are scarce and mainly concern dairy cows. In this study, we showed that FFARs are expressed in 6 different tissues of beef cattle: adipose tissue, muscle tissue, ileum, rectum, liver, and spleen. We also showed that the nature of forage fed to the animals (i.e., grass silage vs. maize silage) has no effect on FFARs gene expression.


Asunto(s)
Dieta , Ácidos Grasos no Esterificados , Receptores Acoplados a Proteínas G , Ensilaje , Animales , Bovinos/genética , Bovinos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Ensilaje/análisis , Ácidos Grasos no Esterificados/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Zea mays/genética , Expresión Génica , Regulación de la Expresión Génica
2.
Animal ; 17(6): 100822, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196580

RESUMEN

Milk proteins are a source of bioactive molecules for calves and humans that may also reflect the physiology and metabolism of dairy cows. Dietary lipid supplements are classically used to modulate the lipid content and composition of bovine milk, with potential impacts on the nutrient's homeostasis and the systemic inflammation of cows that remains to be more explored. This study aimed at identifying discriminant proteins and their associated pathways in twelve Holstein cows (87 ± 7 days in milk), multiparous and non-pregnant, fed for 28 d a diet either, supplemented with 5% DM intake of corn oil and with 50% additional starch from wheat in the concentrate (COS, n = 6) chosen to induce a milk fat depression, or with 3% DM intake of hydrogenated palm oil (HPO, n = 6) known to increase milk fat content. Intake, milk yield and milk composition were measured. On d 27 of the experimental periods, milk and blood samples were collected and label-free quantitative proteomics was performed on proteins extracted from plasma, milk fat globule membrane (MFGM) and skimmed milk (SM). The proteomes from COS and HPO samples were composed of 98, 158 and 70 unique proteins, respectively, in plasma, MFGM and SM. Of these, the combination of a univariate and a multivariate partial least square discriminant analyses reveals that 15 proteins in plasma, 24 in MFGM and 14 in SM signed the differences between COS and HPO diets. The 15 plasma proteins were related to the immune system, acute-phase response, regulation of lipid transport and insulin sensitivity. The 24 MFGM proteins were related to the lipid biosynthetic process and secretion. The 14 SM proteins were linked mainly to immune response, inflammation and lipid transport. This study proposes discriminant milk and plasma proteomes, depending on diet-induced divergence in milk fat secretion, that are related to nutrient homeostasis, inflammation, immunity and lipid metabolism. The present results also suggest a higher state of inflammation with the COS diet.


Asunto(s)
Enfermedades de los Bovinos , Metabolismo de los Lípidos , Femenino , Humanos , Bovinos , Animales , Proteoma/metabolismo , Depresión , Ácidos Grasos/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Lactancia/fisiología , Proteínas de la Leche/metabolismo , Inflamación/veterinaria , Zea mays/metabolismo
3.
Animal ; 17 Suppl 2: 100757, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36966026

RESUMEN

Cows fed total mixed rations (silage-based) may not receive as much essential fatty acids (EFAs) and conjugated linoleic acids (CLAs) as cows fed pasture-based rations (fresh grass) containing rich sources of polyunsaturated fatty acids. CLA-induced milk fat depression allows dairy cows to conserve more metabolisable energy, thereby shortening the state of negative energy balance and reducing excessive fat mobilisation at early lactation. EFAs, particularly α-linolenic acid, exert anti-inflammatory and antioxidative properties, thereby modulating immune functions. Thus, combined EFA and CLA supplementation seems to be an effective nutritional strategy to relieve energy metabolism and to improve immune response, which are often compromised during the transition from late pregnancy to lactation in high-yielding dairy cows. There has been extensive research on this idea over the last two decades, and despite promising results, several interfering factors have led to varying findings, making it difficult to conclude whether and under what conditions EFA and CLA supplementations are beneficial for dairy cows during the transition period. This article reviews the latest studies on the effects of EFA and CLA supplementation, alone or in combination, on dairy cow metabolism and health during various stages around parturition. Our review article summarises and provides novel insights into the mechanisms by which EFA and/or CLA influence markers of metabolism, energy homeostasis and partitioning, immunity, and inflammation revealed by a deep molecular phenotyping.


Asunto(s)
Suplementos Dietéticos , Ácidos Linoleicos Conjugados , Femenino , Bovinos , Embarazo , Animales , Dieta/veterinaria , Ácidos Linoleicos Conjugados/farmacología , Leche/metabolismo , Lactancia/fisiología , Ácidos Grasos Esenciales/metabolismo , Ácidos Grasos Esenciales/farmacología , Ácidos Grasos/metabolismo
4.
J Proteomics ; 273: 104792, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36535620

RESUMEN

We aimed to evaluate the relationships between meat or carcass properties and the abundance of 29 proteins quantified in two muscles, Longissimus thoracis and Rectus abdominis, of Rouge des Prés cows. The relative abundance of the proteins was evaluated using a high throughput immunological method: the Reverse Phase Protein array. A combination of univariate and multivariate analyses has shown that small HSPs (CRYAB, HSPB6), fast glycolytic metabolic and structural proteins (MYH1, ENO3, ENO1, TPI1) when assayed both in RA and LT, were related to meat tenderness, marbling, ultimate pH, as well as carcass fat-to-lean ratio or conformation score. In addition to some small HSP, ALDH1A1 and TRIM72 contributed to the molecular signature of muscular and carcass adiposity. MYH1 and HSPA1A were among the top proteins related to carcass traits. We thus shortened the list to 10 putative biomarkers to be considered in future tools to manage both meat and carcass properties. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is the first proteomics study that aims to evaluate putative biomarkers of both meat and carcass qualities that are of economic importance for the beef industry. Second, the relationship between the abundance of proteins and the carcass or meat traits were evaluated by a combination of univariate and multivariate analyses on 48 cows that are representative of the biological variability of the traits. Third, we provide a short list of ten proteins to be tested in a larger population to feed the pipeline of biomarker discovery.


Asunto(s)
Músculo Esquelético , Carne Roja , Femenino , Bovinos , Animales , Músculo Esquelético/química , Carne/análisis , Proteínas Musculares/metabolismo , Biomarcadores/análisis , Análisis Multivariante , Carne Roja/análisis
5.
PLoS One ; 17(11): e0277458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36445891

RESUMEN

This study explored plasma biomarkers and metabolic pathways underlying feed efficiency measured as residual feed intake (RFI) in Charolais heifers. A total of 48 RFI extreme individuals (High-RFI, n = 24; Low-RFI, n = 24) were selected from a population of 142 heifers for classical plasma metabolite and hormone quantification and plasma metabolomic profiling through untargeted LC-MS. Most efficient heifers (Low-RFI) had greater (P = 0.03) plasma concentrations of IGF-1 and tended to have (P = 0.06) a lower back fat depth compared to least efficient heifers. However, no changes were noted (P ≥ 0.10) for plasma concentrations of glucose, insulin, non-esterified fatty acids, ß-hydroxybutyrate and urea. The plasma metabolomic dataset comprised 3,457 ions with none significantly differing between RFI classes after false discovery rate correction (FDR > 0.10). Among the 101 ions having a raw P < 0.05 for the RFI effect, 13 were putatively annotated by using internal databases and 6 compounds were further confirmed with standards. Metabolic pathway analysis from these 6 confirmed compounds revealed that the branched chain amino acid metabolism was significantly (FDR < 0.05) impacted by the RFI classes. Our results confirmed for the first time in beef heifers previous findings obtained in male beef cattle and pointing to changes in branched-chain amino acids metabolism along with that of body composition as biological mechanisms related to RFI. Further studies are warranted to ascertain whether there is a cause-and-effect relationship between these mechanisms and RFI.


Asunto(s)
Aminoácidos de Cadena Ramificada , Plasma , Masculino , Bovinos , Animales , Femenino , Metabolómica , Ingestión de Alimentos , Progresión de la Enfermedad
6.
Sci Rep ; 12(1): 5648, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383209

RESUMEN

Essential fatty acids (EFA) and conjugated linoleic acids (CLA) are unsaturated fatty acids with immune-modulatory effects, yet their synergistic effect is poorly understood in dairy cows. This study aimed at identifying differentially abundant proteins (DAP) and their associated pathways in dairy cows supplied with a combination of EFA and CLA during the transition from antepartum (AP) to early postpartum (PP). Sixteen Holstein cows were abomasally infused with coconut oil as a control (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (Lutalin, BASF) (EFA + CLA) from - 63 to + 63 days relative to parturition. Label-free quantitative proteomics was performed on plasma samples collected at days - 21, + 1, + 28, and + 63. During the transition time, DAP, consisting of a cluster of apolipoproteins (APO), including APOE, APOH, and APOB, along with a cluster of immune-related proteins, were related to complement and coagulation cascades, inflammatory response, and cholesterol metabolism. In response to EFA + CLA, specific APO comprising APOC3, APOA1, APOA4, and APOC4 were increased in a time-dependent manner; they were linked to triglyceride-enriched lipoprotein metabolisms and immune function. Altogether, these results provide new insights into metabolic and immune adaptation and crosstalk between them in transition dairy cows divergent in EFA + CLA status.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales , Femenino , Lactancia/fisiología , Ácidos Linoleicos Conjugados/metabolismo , Metabolismo de los Lípidos , Leche/metabolismo , Proteómica
7.
J Proteomics ; 252: 104435, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34823037

RESUMEN

Repeated measurements analysis of variance - simultaneous component analysis (ASCA) has been developed to handle complex longitudinal omics datasets and combine novel information with existing data. Herein, we aimed at applying ASCA to 64 liver proteomes collected at 4-time points (day -21, +1, +28, and + 63 relative to parturition) from 16 Holstein cows treated from 9 wk. antepartum to 9 wk. postpartum (PP) with coconut oil (CTRL) or a mixture of essential fatty acids (EFA) and conjugated linoleic acid (CLA) (EFA + CLA). The ASCA modeled 116, 43, and 97 differentially abundant proteins (DAP) during the transition to lactation, between CTRL and EFA + CLA, and their interaction, respectively. Time-dependent DAP were annotated to pathways related to the metabolism of carbohydrates, FA, and amino acid in the PP period. The DAP between FA and the interaction effect were annotated to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, retinol metabolism, and steroid hormone biosynthesis. Collectively, ASCA provided novel information on molecular markers of metabolic adaptations and their interactions with EFA + CLA supplementation. Bioinformatics analysis suggested that supplemental EFA + CLA amplified hepatic FA oxidation; cytochrome P450 was enriched to maintain metabolic homeostasis by oxidation/detoxification of endogenous compounds and xenobiotics. SIGNIFICANCE: This report is among the first ones applying repeated measurement analysis of variance-simultaneous component analysis (ASCA) to deal with longitudinal proteomics results. ASCA separately identified differentially abundant proteins (DAP) in 'transition time', 'between fatty acid treatments', and 'their interaction'. We first identified the molecular signature of hepatic metabolic adaptations during postpartum negative energy balance; the enriched pathways were well-known pathways related to mobilizing fatty acids (FA) and amino acids to support continuous energy production through fatty acid oxidation, TCA cycle, and gluconeogenesis. Some of the DAP were not previously reported in transition dairy cows. Secondly, we provide novel information on the mechanisms by which supplemented essential FA and conjugated linoleic acids interact with hepatic metabolism. In this regard, FA amplified hepatic detoxifying and oxidation capacity through ligand activation of nuclear receptors. Finally, we briefly compared the strengths and weaknesses of the ASCA model with PLS-DA and outlined why these methods are complementary.


Asunto(s)
Ácidos Grasos , Proteoma , Análisis de Varianza , Animales , Bovinos , Dieta , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales/metabolismo , Femenino , Lactancia , Hígado/metabolismo , Leche/metabolismo , Embarazo , Proteoma/metabolismo
8.
J Proteomics ; 252: 104436, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34839038

RESUMEN

This study aimed at investigating the synergistic effects of essential fatty acids (EFA) and conjugated linoleic acids (CLA) on the liver proteome profile of dairy cows during the transition to lactation. 16 Holstein cows were infused from 9 wk. antepartum to 9 wk. postpartum into the abomasum with either coconut oil (CTRL) or a mixture of EFA (linseed + safflower oil) and CLA (EFA + CLA). Label-free quantitative proteomics was performed in liver tissue biopsied at days -21, +1, +28, and + 63 relative to calving. Differentially abundant proteins (DAP) between treatment groups were identified at the intersection between a multivariate and a univariate analysis. In total, 1680 proteins were identified at each time point, of which between groups DAP were assigned to the metabolism of xenobiotics by cytochrome P450, drug metabolism - cytochrome P450, steroid hormone biosynthesis, glycolysis/gluconeogenesis, and glutathione metabolism. Cytochrome P450, as a central hub, enriched with specific CYP enzymes comprising: CYP51A1 (d - 21), CYP1A1 & CYP4F2 (d + 28), and CYP4V2 (d + 63). Collectively, supplementation of EFA + CLA in transition cows impacted hepatic lipid metabolism and enriched several common biological pathways at all time points that were mainly related to ω-oxidation of fatty acids through the Cytochrome p450 pathway. SIGNIFICANCE: In three aspects this manuscript is notable. First, this is among the first longitudinal proteomics studies in nutrition of dairy cows. The selected time points are critical periods around parturition with profound endocrine and metabolic adaptations. Second, our findings provided novel information on key drivers of biologically relevant pathways suggested according to previously reported performance, zootechnical, and metabolism data (already published elsewhere). Third, our results revealed the role of cytochrome P450 that is hardly investigated, and of ω-oxidation pathways in the metabolism of fatty acids with the involvement of specific enzymes.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Bovinos , Dieta , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Esenciales/metabolismo , Ácidos Grasos Esenciales/farmacología , Femenino , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos Conjugados/farmacología , Hígado/metabolismo , Leche , Embarazo , Proteoma/metabolismo
9.
Front Microbiol ; 13: 1062113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620055

RESUMEN

Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.

10.
Sci Rep ; 11(1): 24346, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934071

RESUMEN

Residual feed intake (RFI) is one of the preferred traits for feed efficiency animal breeding. However, RFI measurement is expensive and time-consuming and animal ranking may depend on the nature of the diets. We aimed to explore RFI plasma biomarkers and to unravel the underlying metabolic pathways in yearling bulls fed either a corn-silage diet rich in starch (corn diet) or a grass-silage diet rich in fiber (grass diet). Forty-eight extreme RFI animals (Low-RFI, n = 24, versus High-RFI, n = 24, balanced per diet) were selected from a population of 364 Charolais bulls and their plasma was subjected to a targeted LC-MS metabolomic approach together with classical metabolite and hormonal plasma analyses. Greater lean body mass and nitrogen use efficiency, and lower protein turnover were identified as common mechanisms underlying RFI irrespective of the diet. On the other hand, greater adiposity and plasma concentrations of branched-chain amino acids (BCAA) together with lower insulin sensitivity in High-RFI animals were only observed with corn diet. Conversely, greater plasma concentrations of BCAA and total triglycerides, but similar insulin concentrations were noted in efficient RFI cattle with grass diet. Our data suggest that there are diet-specific mechanisms explaining RFI differences in fattening Charolais yearling bulls.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Ingestión de Alimentos , Metaboloma , Poaceae/química , Zea mays/química , Animales , Composición Corporal , Bovinos , Dieta/clasificación , Conducta Alimentaria , Masculino
11.
Nutrients ; 13(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802038

RESUMEN

Many studies have highlighted the relationship between food and health status, with the aim of improving both disease prevention and life expectancy. Among the different food groups, fermented foods a have huge microbial biodiversity, making them an interesting source of metabolites that could exhibit health benefits. Our previous study highlighted the capacity of raw goat milk cheese, and some of the extracts recovered by the means of chemical fractionation, to increase the longevity of the nematode Caenorhabditis elegans. In this article, we pursued the investigation with a view toward understanding the biological mechanisms involved in this phenomenon. Using mutant nematode strains, we evaluated the implication of the insulin-like DAF-2/DAF-16 and the p38 MAPK pathways in the phenomenon of increased longevity and oxidative-stress resistance mechanisms. Our results demonstrated that freeze-dried raw goat milk cheese, and its extracts, induced the activation of the DAF-2/DAF-16 pathway, increasing longevity. Concerning oxidative-stress resistance, all the extracts increased the survival of the worms, but no evidence of the implication of both of the pathways was highlighted, except for the cheese-lipid extract that did seem to require both pathways to improve the survival rate. Simultaneously, the cheese-lipid extract and the dried extract W70, obtained with water, were able to reduce the reactive oxygen species (ROS) production in human leukocytes. This result is in good correlation with the results obtained with the nematode.


Asunto(s)
Caenorhabditis elegans/fisiología , Queso , Leucocitos/fisiología , Estrés Oxidativo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Alimentos en Conserva , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Liofilización , Regulación de la Expresión Génica , Longevidad , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Leche , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
12.
Proteomics ; 21(10): e2000214, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33733615

RESUMEN

Mass spectrometry has proven to be a valuable tool for the accurate quantification of proteins. In this study, the performances of three targeted approaches, namely selected reaction monitoring (SRM), parallel reaction monitoring (PRM) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS), to accurately quantify ten potential biomarkers of beef meat tenderness or marbling in a cohort of 64 muscle samples were evaluated. So as to get the most benefit out of the complete MS2 maps that are acquired in SWATH-MS, an original label-free quantification method to estimate protein amounts using an I-spline regression model was developed. Overall, SWATH-MS outperformed SRM in terms of sensitivity and dynamic range, while PRM still performed the best, and all three strategies showed similar quantification accuracies and precisions for the absolute quantification of targets of interest. This targeted picture was extended by 585 additional proteins for which amounts were estimated using the label-free approach on SWATH-MS; thus, offering a more global profiling of muscle proteomes and further insights into muscle type effect on candidate biomarkers of beef meat qualities as well as muscle metabolism.


Asunto(s)
Músculos , Proteoma , Animales , Biomarcadores , Bovinos , Humanos , Espectrometría de Masas
13.
J Anim Sci ; 99(2)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33624102

RESUMEN

The mutation T3811 → G3811 (TG3811) discovered in the myostatin gene of the Blonde d'Aquitaine breed is suspected of contributing to the outstanding muscularity of this breed. An experiment was designed to estimate the effect of this mutation in an F2 and back-cross Blonde d'Aquitaine × Holstein population. By genotyping all known mutations in the myostatin gene, it was ensured that the TG3811 mutation was indeed the only known mutation segregating in this population. Fifty-six calves (43 F2, 13 back-cross) were intensively fattened and slaughtered at 24.0 ± 1.4 wk of age. The effects of the mutation were estimated by comparing the calves with the [T/T] (n = 18), [T/G] (n = 30), and [G/G] (n = 8) genotypes. Highly significant substitution effects (P < 0.001), above + 1.2 phenotypic SD, were shown on carcass yield and muscularity scores. Birth weight (P < 0.001) was positively affected by the mutation (+0.8 SD) but not growth rate (P = 0.97), while carcass length (P = 0.03), and fatness (P ≤ 0.03) were negatively affected (-0.5 to -0.7 SD). The characteristics of the Triceps brachii muscle were affected by the mutation (P < 0.001), with lower ICDH activity (oxidative) and a higher proportion of myosin type 2X muscle fibers (fast twitch). The effects of the TG3811 mutation were similar to those of other known myostatin mutations, although the Blonde d'Aquitaine animals, which are predominantly [G/G] homozygous, do not exhibit extreme double muscling.


Asunto(s)
Miostatina , Carne Roja , Animales , Bovinos/genética , Genotipo , Mutación , Miostatina/genética , Fenotipo
14.
Methods ; 186: 79-89, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32649989

RESUMEN

Marbling and rib composition are important attributes related to carcass yields and values, beef quality, consumer satisfaction and purchasing decisions. An open-access computer image analysis method based on a fresh beef rib image captured under nonstandardized and uncontrolled conditions was developed to determine the intramuscular, intermuscular and total fat content. For this purpose, cross-section images of the 5th-6th rib from 130 bovine carcasses were captured with a Galaxy S8 smartphone. The pictures were analyzed with a program developed using ImageJ open source software. The 17 processed image features that were obtained were mined relative to gold standard measures, namely, intermuscular fat, total fat and muscles dissected from a rib and weighed, and intramuscular fat content (IMF - marbling) determined by the Soxhlet method. The best predictions with the lowest prediction errors were obtained by the sparse partial least squares method for both IMF percent and rib composition and from a combination of animal and image analysis features captured from the caudal face of the 6th rib captured on a table. These predictions were more accurate than those based on animal and image analysis features captured from the caudal face of the 5th rib on hanging carcasses. The external-validated prediction precision was 90% for IMF and ranged from 71 to 86% for the total fat, intermuscular and muscle rib weight ratios. Therefore, an easy, low-cost, user-friendly and rapid method based on a smartphone picture from the 6th rib of bovine carcasses provides an accurate method for fat content determination.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Músculo Esquelético/diagnóstico por imagen , Carne Roja/normas , Animales , Bovinos , Aplicaciones Móviles , Costillas/diagnóstico por imagen , Teléfono Inteligente
15.
Autophagy ; 17(8): 1809-1827, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32686564

RESUMEN

Autophagy (a process of cellular self-eating) is a conserved cellular degradative process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Surprisingly, little attention has been paid to the role of this cellular function in species of agronomical interest, and the details of how autophagy functions in the development of phenotypes of agricultural interest remain largely unexplored. Here, we first provide a brief description of the main mechanisms involved in autophagy, then review our current knowledge regarding autophagy in species of agronomical interest, with particular attention to physiological functions supporting livestock animal production, and finally assess the potential of translating the acquired knowledge to improve animal development, growth and health in the context of growing social, economic and environmental challenges for agriculture.Abbreviations: AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ASC: adipose-derived stem cells; ATG: autophagy-related; BECN1: beclin 1; BNIP3: BCL2 interacting protein 3; BVDV: bovine viral diarrhea virus; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DAP: Death-Associated Protein; ER: endoplasmic reticulum; GFP: green fluorescent protein; Gln: Glutamine; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; IF: immunofluorescence; IVP: in vitro produced; LAMP2A: lysosomal associated membrane protein 2A; LMS: lysosomal membrane stability; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MDBK: Madin-Darby bovine kidney; MSC: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NDV: Newcastle disease virus; NECTIN4: nectin cell adhesion molecule 4; NOD1: nucleotide-binding oligomerization domain 1; OCD: osteochondritis dissecans; OEC: oviduct epithelial cells; OPTN: optineurin; PI3K: phosphoinositide-3-kinase; PPRV: peste des petits ruminants virus; RHDV: rabbit hemorrhagic disease virus; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Lisosomas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Granjas , Humanos , Transducción de Señal/fisiología
17.
PLoS One ; 15(11): e0242370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211771

RESUMEN

With the ever-increasing human lifespan, age-related affections have become a public health issue. The health sector is looking for new bioactive compounds to respond to this demand. The unexplored microbial biodiversity and its metabolites represent a major source of innovative bioactive molecules with health potential. Fermented foods, such as raw-milk cheese, have already been investigated for their rich microbial environment, especially for their organoleptic qualities. But studies remain limited regarding their effects on health and few metabolites of microbial origin have been identified. An efficient methodology was developed in this study to investigate the biological effect of raw-milk cheese, combining a chemical fractionation, to isolate the most metabolites from the cheese matrix, and an in vivo biological test using Caenorhabditis elegans. C. elegans was brought into contact with cheese extracts, obtained by means of chemical fractionation, and with freeze-dried whole cheese by supplementing the nematode growth medium. A longevity assay was performed to evaluate the effects of the extracts on the worms. Our results demonstrate the feasibility of the method developed to bring the worms into contact of the cheese extracts. The evaluation of the effects of the extracts on the longevity was possible. Some extracts showed a beneficial effect as extract W70 for example, obtained with water, which increases the mean lifespan by 16% and extends the longevity by 73% (p < 0.0001).


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Queso/análisis , Fraccionamiento Químico/métodos , Mezclas Complejas/farmacología , Análisis de los Alimentos/métodos , Acetatos , Animales , Caenorhabditis elegans/fisiología , Mezclas Complejas/aislamiento & purificación , Mezclas Complejas/toxicidad , Ciclohexanos , Etanol , Estudios de Factibilidad , Liofilización , Cabras , Interacciones Hidrofóbicas e Hidrofílicas , Longevidad/efectos de los fármacos , Cloruro de Metileno , Leche/química , Solventes , Agua
18.
Foods ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858893

RESUMEN

This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner-Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: ß-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.

19.
Physiol Genomics ; 52(8): 322-332, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657225

RESUMEN

The lean-to-fat ratio is a major issue in the beef meat industry from both carcass and meat production perspectives. This industrial perspective has motivated meat physiologists to use transcriptomics technologies to decipher mechanisms behind fat deposition within muscle during the time course of muscle growth. However, synthetic biological information from this volume of data remains to be produced to identify mechanisms found in various breeds and rearing practices. We conducted a meta-analysis on 10 transcriptomic data sets stored in public databases, from the longissimus thoracis of five different bovine breeds divergent by age. We updated gene identifiers on the last version of the bovine genome (UCD1.2), and the 715 genes common to the 10 studies were subjected to the meta-analysis. Of the 238 genes differentially expressed (DEG), we identified a transcriptional signature of the dynamic regulation of glycolytic and oxidative metabolisms that agrees with a known shift between those two pathways from the animal puberty. We proposed some master genes of the myogenesis, namely MYOG and MAPK14, as probable regulators of the glycolytic and oxidative metabolisms. We also identified overexpressed genes related to lipid metabolism (APOE, LDLR, MXRA8, and HSP90AA1) that may contribute to the expected enhanced marbling as age increases. Lastly, we proposed a transcriptional signature related to the induction (YBX1) or repression (MAPK14, YWAH, ERBB2) of the commitment of myogenic progenitors into the adipogenic lineage. The relationships between the abundance of the identified mRNA and marbling values remain to be analyzed in a marbling biomarkers discovery perspectives.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Envejecimiento/genética , Genes , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Carne Roja/análisis , Transcriptoma , Tejido Adiposo/metabolismo , Animales , Cruzamiento , Bovinos , Bases de Datos Genéticas , Glucólisis/genética , Metabolismo de los Lípidos/genética , Oxidación-Reducción , RNA-Seq/métodos , Tórax/metabolismo
20.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575512

RESUMEN

Crosstalk between adipose and muscular tissues is hypothesized to regulate the number of muscular and adipose cells during fetal growth, with post-natal consequences on lean and fat masses. Such crosstalk largely remains, however, to be described. We hypothesized that a characterization of the proteomes of adipose and muscular tissues from bovine fetuses may enhance the understanding of the crosstalk between these tissues through the prediction of their secretomes and surfaceomes. Proteomic experiments have identified 751 and 514 proteins in fetal adipose tissue and muscle. These are mainly involved in the regulation of cell proliferation or differentiation, but also in pathways such as apoptosis, Wnt signalling, or cytokine-mediated signalling. Of the identified proteins, 51 adipokines, 11 myokines, and 37 adipomyokines were predicted, together with 26 adipose and 13 muscular cell surface proteins. Analysis of protein-protein interactions suggested 13 links between secreted and cell surface proteins that may contribute to the adipose-muscular crosstalk. Of these, an interaction between the adipokine plasminogen and the muscular cell surface alpha-enolase may regulate the fetal myogenesis. The in silico secretome and surfaceome analyzed herein exemplify a powerful strategy to enhance the elucidation of the crosstalk between cell types or tissues.


Asunto(s)
Tejido Adiposo/embriología , Músculos/embriología , Mapas de Interacción de Proteínas , Proteómica/métodos , Tejido Adiposo/metabolismo , Animales , Bovinos , Minería de Datos , Bases de Datos de Proteínas , Femenino , Músculos/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...