Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(25): 251001, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38181368

RESUMEN

The LHAASO Collaboration detected the gamma ray burst GRB 221009A at energies above 500 GeV with a tail extending up to 18 TeV, whose spectral analysis has presently been performed up to 7 TeV for the lower energy instrument LHAASO-WCDA only, with no indication of a cutoff. Soon thereafter, Carpet-2 at Baksan Neutrino Observatory reported the observation of an air shower consistent with being caused by a photon of energy 251 TeV from the same GRB. Given the source redshift z=0.151, the expected attenuation due to the extragalactic background light is very severe so that these detections have proven very hard to explain. In this Letter, we show that the existence of axionlike particles with mass m_{a}≃(10^{-11}-10^{-7}) eV and two-photon coupling g_{aγγ}≃(3-5)×10^{-12} GeV^{-1} strongly reduce the optical depth of TeV photons, thus explaining the observations. Our ALPs meet all available constraints, are consistent with two previous hints at their existence, and are good candidates for cold dark matter. Moreover, we show that Lorentz invariance violation can explain the Carpet-2 result but not the LHAASO observations.

2.
Nature ; 611(7937): 677-681, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36418451

RESUMEN

Most of the light from blazars, active galactic nuclei with jets of magnetized plasma that point nearly along the line of sight, is produced by high-energy particles, up to around 1 TeV. Although the jets are known to be ultimately powered by a supermassive black hole, how the particles are accelerated to such high energies has been an unanswered question. The process must be related to the magnetic field, which can be probed by observations of the polarization of light from the jets. Measurements of the radio to optical polarization-the only range available until now-probe extended regions of the jet containing particles that left the acceleration site days to years earlier1-3, and hence do not directly explore the acceleration mechanism, as could X-ray measurements. Here we report the detection of X-ray polarization from the blazar Markarian 501 (Mrk 501). We measure an X-ray linear polarization degree ΠX of around 10%, which is a factor of around 2 higher than the value at optical wavelengths, with a polarization angle parallel to the radio jet. This points to a shock front as the source of particle acceleration and also implies that the plasma becomes increasingly turbulent with distance from the shock.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...