Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
EJNMMI Res ; 14(1): 19, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363422

RESUMEN

BACKGROUND: Mutations in the epidermal growth factor receptor (EGFR) kinase domain are common in non-small cell lung cancer. Conventional tyrosine kinase inhibitors target the mutation site in the ATP binding pocket, thereby inhibiting the receptor's function. However, subsequent treatment resistance mutations in the ATP binding site are common. The EGFR allosteric inhibitor, EAI045, is proposed to have an alternative mechanism of action, disrupting receptor signaling independent of the ATP-binding site. The antibody cetuximab is hypothesized to increase the number of accessible allosteric pockets for EAI045, thus increasing the potency of the inhibitor. This work aimed to gain further knowledge on pharmacokinetics, the EGFR mutation-targeting potential, and the influence of cetuximab on the uptake by radiolabeling EAI045 with carbon-11 and tritium. RESULTS: 2-(5-fluoro-2-hydroxyphenyl)-2-((2-iodobenzyl)amino)-N-(thiazol-2-yl)acetamide and 2-(5-fluoro-2-hydroxyphenyl)-N-(5-iodothiazol-2-yl)-2-(1-oxoisoindolin-2-yl)acetamide were synthesized as precursors for the carbon-11 and tritium labeling of EAI045, respectively. [11C]EAI045 was synthesized using [11C]CO in a palladium-catalyzed ring closure in a 10 ± 1% radiochemical yield (decay corrected to end of [11C]CO2 production), > 97% radiochemical purity and 26 ± 1 GBq/µmol molar activity (determined at end of synthesis) in 51 min. [3H]EAI045 was synthesized by a tritium-halogen exchange in a 0.2% radiochemical yield, 98% radiochemical purity, and 763 kBq/nmol molar activity. The ability of [11C]EAI045 to differentiate between L858R/T790M mutated EGFR expressing H1975 xenografts and wild-type EGFR expressing A549 xenografts was evaluated in female nu/nu mice. The uptake was statistically significantly higher in H1975 xenografts compared to A549 xenografts (0.45 ± 0.07%ID/g vs. 0.31 ± 0.10%ID/g, P = 0.0166). The synergy in inhibition between EAI045 and cetuximab was evaluated in vivo and in vitro. While there was some indication that cetuximab influenced the uptake of [3H]EAI045 in vitro, this could not be confirmed in vivo when tumor-bearing mice were administered cetuximab (0.5 mg), 24 h prior to injection of [11C]EAI045. CONCLUSIONS: EAI045 was successfully labeled with tritium and carbon-11, and the in vivo results indicated [11C]EAI045 may be able to distinguish between mutated and non-mutated EGFR in non-small cell lung cancer mouse models. Cetuximab was hypothesized to increase EAI045 uptake; however, no significant effect was observed on the uptake of [11C]EAI045 in vivo or [3H]EAI045 in vitro in H1975 xenografts and cells.

3.
Mol Imaging Biol ; 25(6): 1054-1062, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37872462

RESUMEN

PURPOSE: There is robust evidence that people with schizophrenia show elevated dopamine (DA) synthesis capacity in the striatum. This finding comes from positron emission tomography (PET) studies using radiolabelled l-3,4-dihydroxyphenylalanine (18F-DOPA). DA synthesis capacity also appears to be elevated in the midbrain of people with schizophrenia compared to healthy controls. We therefore aimed to optimise a method to quantify 18F-DOPA uptake in the midbrain of mice, and to utilise this method to quantify DA synthesis capacity in the midbrain of the sub-chronic ketamine model of schizophrenia-relevant hyperdopaminergia. PROCEDURES: Adult male C57Bl6 mice were treated daily with either ketamine (30 mg/kg, i.p.) or vehicle (saline) for 5 days. On day 7, animals were administered 18F-DOPA (i.p.) and scanned in an Inveon PET/CT scanner. Data from the saline-treated group were used to optimise an atlas-based template to position the midbrain region of interest and to determine the analysis parameters which resulted in the greatest intra-group consistency. These parameters were then used to compare midbrain DA synthesis capacity (KiMod) between ketamine- and saline-treated animals. RESULTS: Using an atlas-based template to position the 3.7 mm3 midbrain ROI with a T*-Tend window of 15-140 min to estimate KiMod resulted in the lowest intra-group variability and moderate test-retest agreement. Using these parameters, we found that KiMod was elevated in the midbrain of ketamine-treated animals in comparison to saline-treated animals (t(22) = 2.19, p = 0.048). A positive correlation between DA synthesis capacity in the striatum and the midbrain was also evident in the saline-treated animals (r2 = 0.59, p = 0.005) but was absent in ketamine-treated animals (r2 = 0.004, p = 0.83). CONCLUSIONS: Using this optimised method for quantifying 18F-DOPA uptake in the midbrain, we found that elevated striatal DA synthesis capacity in the sub-chronic ketamine model extends to the midbrain. Interestingly, the dysconnectivity between the midbrain and striatum seen in this model is also evident in the clinical population. This model may therefore be ideal for assessing novel compounds which are designed to modulate pre-synaptic DA synthesis capacity.


Asunto(s)
Dopamina , Ketamina , Humanos , Adulto , Masculino , Animales , Ratones , Ketamina/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratones Endogámicos C57BL , Dihidroxifenilalanina , Tomografía de Emisión de Positrones/métodos , Cuerpo Estriado , Mesencéfalo/diagnóstico por imagen
4.
Mol Imaging ; 2022: 4419221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36721730

RESUMEN

Positron emission tomography (PET) using the radiotracer [18F]-FDOPA provides a tool for studying brain dopamine synthesis capacity in animals and humans. We have previously standardised a micro-PET methodology in mice by intravenously administering [18F]-FDOPA via jugular vein cannulation and assessment of striatal dopamine synthesis capacity, indexed as the influx rate constant K i Mod of [18F]-FDOPA, using an extended graphical Patlak analysis with the cerebellum as a reference region. This enables a direct comparison between preclinical and clinical output values. However, chronic intravenous catheters are technically difficult to maintain for longitudinal studies. Hence, in this study, intraperitoneal administration of [18F]-FDOPA was evaluated as a less-invasive alternative that facilitates longitudinal imaging. Our experiments comprised the following assessments: (i) comparison of [18F]-FDOPA uptake between intravenous and intraperitoneal radiotracer administration and optimisation of the time window used for extended Patlak analysis, (ii) comparison of Ki Mod in a within-subject design of both administration routes, (iii) test-retest evaluation of Ki Mod in a within-subject design of intraperitoneal radiotracer administration, and (iv) validation of Ki Mod estimates by comparing the two administration routes in a mouse model of hyperdopaminergia induced by subchronic ketamine. Our results demonstrate that intraperitoneal [18F]-FDOPA administration resulted in good brain uptake, with no significant effect of administration route on Ki Mod estimates (intraperitoneal: 0.024 ± 0.0047 min-1, intravenous: 0.022 ± 0.0041 min-1, p = 0.42) and similar coefficient of variation (intraperitoneal: 19.6%; intravenous: 18.4%). The technique had a moderate test-retest validity (intraclass correlation coefficient (ICC) = 0.52, N = 6) and thus supports longitudinal studies. Following subchronic ketamine administration, elevated K i Mod as compared to control condition was measured with a large effect size for both methods (intraperitoneal: Cohen's d = 1.3; intravenous: Cohen's d = 0.9), providing further evidence that ketamine has lasting effects on the dopamine system, which could contribute to its therapeutic actions and/or abuse liability.


Asunto(s)
Dopamina , Ketamina , Humanos , Animales , Ratones , Tomografía de Emisión de Positrones , Encéfalo , Modelos Animales de Enfermedad
5.
Mol Psychiatry ; 26(6): 2562-2576, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32382134

RESUMEN

Patients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes. Mice were treated with sub-chronic ketamine (30 mg/kg) or saline and then received in vivo positron emission tomography of striatal dopamine synthesis capacity, analogous to measures used in patients. Locomotor activity was measured using the open-field test. In vivo cell-type-specific chemogenetic approaches and pharmacological interventions were used to manipulate neuronal excitability. Immunohistochemistry and RNA sequencing were used to investigate molecular mechanisms. Sub-chronic ketamine increased striatal dopamine synthesis capacity (Cohen's d = 2.5) and locomotor activity. These effects were countered by inhibition of midbrain dopamine neurons, and by activation of PV interneurons in pre-limbic cortex and ventral subiculum of the hippocampus. Sub-chronic ketamine reduced PV expression in these cortical and hippocampal regions. Pharmacological intervention with SEP-363856, a novel psychotropic agent with agonism at trace amine receptor 1 (TAAR1) and 5-HT1A receptors but no appreciable action at dopamine D2 receptors, significantly reduced the ketamine-induced increase in dopamine synthesis capacity. These results show that sub-chronic ketamine treatment in mice mimics the dopaminergic alterations in patients with psychosis, that this requires activation of midbrain dopamine neurons, and can be ameliorated by activating PV interneurons and by a TAAR1/5-HT1A agonist. This identifies novel therapeutic approaches for targeting presynaptic dopamine dysfunction in patients with schizophrenia and effects of ketamine relevant to its therapeutic use for  treating major depression.


Asunto(s)
Ketamina , Esquizofrenia , Animales , Dopamina , Humanos , Ketamina/farmacología , Ratones , Piranos , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamiento farmacológico
6.
Neurobiol Aging ; 66: 75-84, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29547750

RESUMEN

Robust physiological circadian rhythms form an integral part of well-being. The aging process has been found to negatively impact systems that drive circadian physiology, typically manifesting as symptoms associated with abnormal/disrupted sleeping patterns. Here, we investigated the age-related decline in light-driven circadian entrainment in male C57BL/6J mice. We compared light-driven resetting of circadian behavioral activity in young (1-2 months) and old (14-18 months) mice and explored alterations in the glutamatergic pathway at the level of the circadian pacemaker, the suprachiasmatic nucleus (SCN). Aged animals showed a significant reduction in sensitivity to behavioral phase resetting by light. We show that this change was through alterations in N-Methyl-D-aspartate (NMDA) signaling at the SCN, where NMDA, a glutamatergic agonist, was less potent in inducing clock resetting. Finally, we show that this shift in NMDA sensitivity was through the reduced SCN expression of this receptor's NR2B subunit. Only in young animals did an NR2B antagonist attenuate behavioral resetting. These results can help target treatments that aim to improve both physiological and behavioral circadian entrainment in aged populations.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Trastornos Cronobiológicos/etiología , Trastornos Cronobiológicos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Ojo/fisiopatología , Luz , N-Metilaspartato/fisiología , Transducción de Señal/fisiología , Núcleo Supraquiasmático/fisiopatología , Vías Visuales/fisiopatología , Animales , Masculino , Ratones Endogámicos C57BL , N-Metilaspartato/metabolismo , Núcleo Supraquiasmático/metabolismo
7.
J Neurochem ; 143(5): 551-560, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28921596

RESUMEN

Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Cocaína/administración & dosificación , Cuerpo Estriado/metabolismo , Dihidroxifenilalanina/análisis , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Radioisótopos de Flúor , Masculino , Ratones Endogámicos C57BL , Microdiálisis/métodos , Tomografía de Emisión de Positrones
8.
Psychopharmacology (Berl) ; 233(9): 1637-50, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26847047

RESUMEN

RATIONALE: Psychosocial stressors are a well-documented risk factor for mental illness. Neuroinflammation, in particular elevated microglial activity, has been proposed to mediate this association. A number of preclinical studies have investigated the effect of stress on microglial activity. However, these have not been systematically reviewed before. OBJECTIVES: This study aims to systematically review the effects of stress on microglia, as indexed by the histological microglial marker ionised calcium binding adaptor molecule 1 (Iba-1), and consider the implications of these for the role of stress in the development of mental disorders. METHODS: A systematic review was undertaken using pre-defined search criteria on PubMed and EMBASE. Inclusion and data extraction was agreed by two independent researchers after review of abstracts and full text. RESULTS: Eighteen studies met the inclusion criteria. These used seven different psychosocial stressors, including chronic restraint, social isolation and repeated social defeat in gerbils, mice and/or rats. The hippocampus (11/18 studies) and prefrontal cortex (13/18 studies) were the most frequently studied areas. Within the hippocampus, increased Iba-1 levels of between 20 and 200 % were reported by all 11 studies; however, one study found this to be a duration-dependent effect. Of those examining the prefrontal cortex, ∼75 % found psychosocial stress resulted in elevated Iba-1 activity. Elevations were also consistently seen in the nucleus accumbens, and under some stress conditions in the amygdala and paraventricular nucleus. CONCLUSIONS: There is consistent evidence that a range of psychosocial stressors lead to elevated microglial activity in the hippocampus and good evidence that this is also the case in other brain regions. These effects were seen with early-life/prenatal stress, as well as stressors in adulthood. We consider these findings in terms of the two-hit hypothesis, which proposes that early-life stress primes microglia, leading to a potentiated response to subsequent stress. The implications for understanding the pathoaetiology of mental disorders and the development of new treatments are also considered.


Asunto(s)
Inflamación/inmunología , Trastornos Mentales/inmunología , Trastornos Mentales/fisiopatología , Microglía/inmunología , Estrés Psicológico/inmunología , Animales , Humanos , Inflamación/fisiopatología , Trastornos Mentales/psicología , Psiconeuroinmunología , Trastornos Psicóticos/inmunología , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/psicología , Estrés Psicológico/fisiopatología , Estrés Psicológico/psicología
9.
PLoS One ; 10(10): e0140678, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26469939

RESUMEN

Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson's Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1ß). We investigated the behavioral responses of mice to IL-1ß. Female C57Bl/6J mice of 3 ages were administered IL-1ß at various doses i.p. Interleukin-1ß reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1ß dose-dependently reduced locomotor activity. Using doses of IL-1ß that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1ß on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1ß -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1ß administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for reversal of fatigue.


Asunto(s)
Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Fatiga/inducido químicamente , Interleucina-1beta/farmacología , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Animales , Animales de Laboratorio , Regulación hacia Abajo/efectos de los fármacos , Fatiga/patología , Femenino , Infusiones Intraventriculares , Interleucina-1beta/administración & dosificación , Ratones , Condicionamiento Físico Animal
10.
Chronobiol Int ; 30(4): 460-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23281717

RESUMEN

The environmental day-night cycle provides the principal synchronizing signal for behavioral activity in most mammals. Light information is relayed to the master circadian pacemaker, the suprachiasmatic nucleus (SCN), via synaptic transmission from the retina directly to the SCN, where a predominately glutamate-driven cellular signaling pathway is able to reset biochemical, physiological, and behavioral activities. In the present study, we aimed to decipher the key roles played by protein kinase C (PKC) in regulating light-induced behavioral resetting under both a temporal and intensity-dependent manner; in addition, we also investigate PKC contributions to advancing and delaying re-entrainment paradigms. Our findings show that during the early night PKC acts in a temporal manner, where PKC inhibition selectively attenuates light-induced behavioral resetting in response to subsaturating and saturating light intensities. Declines in light response were also evident upon PKC inhibition during the late night, but restricted to bright light stimuli. The positive regulatory actions of PKC were further demonstrated in response to an 8-h delayed re-entrainment paradigm where inhibition of PKC resulted in slower re-entrainment. Further, analysis of both classic and novel PKC isozymes present within the SCN showed significant circadian variation in the mRNA expression of PKCα, indicating possible isozyme-specific mediators in photic signaling. Our data provide evidence of a PKC contribution to both acute light-induced clock resetting, which is intensity and time of day dependent, and a functional role in circadian photoentrainment.


Asunto(s)
Relojes Circadianos/fisiología , Proteína Quinasa C/metabolismo , Adaptación Fisiológica , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Regulación Enzimológica de la Expresión Génica/fisiología , Isoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Fotoperiodo , Proteína Quinasa C/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Transcriptoma
11.
Small ; 9(3): 472-7, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23112137

RESUMEN

Interleukin 1 beta (IL-1ß)-dependent inflammatory disorders, such as rheumatoid arthritis and psoriasis, pose a serious medical burden worldwide, where patients face a lifetime of illness and treatment. Organogold compounds have been used since the 1930s to treat rheumatic and other IL-1ß-dependent diseases and, though their mechanisms of action are still unclear, there is evidence that gold interferes with the transmission of inflammatory signalling. Here we show for the first time that citrate-stabilized gold nanoparticles, in a size dependent manner, specifically downregulate cellular responses induced by IL-1ß both in vitro and in vivo. Our results indicate that the anti-inflammatory activity of gold nanoparticles is associated with an extracellular interaction with IL-1ß, thus opening potentially novel options for further therapeutic applications.


Asunto(s)
Oro/química , Interleucina-1beta/farmacología , Nanopartículas del Metal/química , Animales , Western Blotting , Caspasa 1/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...