Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Metabolites ; 14(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276311

RESUMEN

Branched-chain amino acids (BCAA) are essential for maintaining intestinal mucosal integrity. However, only a few studies have explored the role of BCAA in the modulation of intestinal inflammation. In this study, we investigated in vitro effects of BCAA on the inflammatory response induced by lipopolysaccharide (LPS) (1 µg/mL) in Caco-2 cells. Caco-2 cells were assigned to six groups: control without BCAA (CTL0), normal BCAA (CTL; 0.8 mM leucine, 0.8 mM isoleucine, and 0.8 mM valine); leucine (LEU; 2 mM leucine), isoleucine (ISO; 2 mM isoleucine), valine (VAL; 2 mM valine), and high BCAA (LIV; 2 mM leucine, 2 mM isoleucine, and 2 mM valine). BCAA was added to the culture medium 24 h before LPS stimulation. Our results indicated that BCAA supplementation did not impair cell viability. The amino acids leucine and isoleucine attenuated the synthesis of IL-8 and JNK and NF-kB phosphorylation induced by LPS. Furthermore, neither BCAA supplementation nor LPS treatment modulated the activity of glutathione peroxidase or the intracellular reduced glutathione/oxidized glutathione ratio. Therefore, leucine and isoleucine exert anti-inflammatory effects in Caco-2 cells exposed to LPS by modulating JNK and NF-kB phosphorylation and IL-8 production. Further in vivo studies are required to validate these findings and gather valuable information for potential therapeutic or dietary interventions.

2.
Amino Acids ; 53(4): 597-607, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33715068

RESUMEN

Although branched-chain amino acids (BCAA) are commonly used as a strategy to recover nutritional status of critically ill patients, recent findings on their role as immunonutrients have been associated with unfavorable outcomes, especially in obese patients. The present study aimed to explore the effects of different BCAA supplementation protocols in the inflammatory response of LPS-stimulated RAW 264.7 macrophages. Cell cultures were divided into five groups, with and without BCAA supplementation, (2 mmol/L of each amino acid). Then, cell cultures followed three different treatment protocols, consisting of a pretreatment (PT), an acute treatment (AT), and a chronic treatment (CT) with BCAA and LPS stimulation (1 µg/mL). Cell viability was analyzed by MTT assay, NO production was assessed by the Griess reaction and IL-6, IL-10, TNF-α and PGE2 synthesis, was evaluated by ELISA. BCAA significantly increased cell viability in AT and CT protocols, and NO and IL-10 synthesis in all treatment protocols. IL-6 synthesis was only increased in PT and CT protocols. TNF-α and PGE2 synthesis were not altered in any of the protocols and groups. BCAA supplementation was able to increase both pro and anti-inflammatory mediators synthesis by RAW 264.7 macrophages, which was influenced by the protocol applied. Moreover, these parameters were significantly increased by isoleucine supplementation, highlighting a potential research field for future studies.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Inflamación , Macrófagos/inmunología , Ratones , Óxido Nítrico/metabolismo , Células RAW 264.7
3.
Nutrition ; 65: 131-137, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31100607

RESUMEN

OBJECTIVE: Although glutamine and alanine have properties that could delay fatigue, recent evidence showed that these amino acids impaired central fatigue markers. Nevertheless, the effect of this intervention on muscle fatigue is unknown. The aim of this study was to investigate the effects of glutamine and alanine supplementation on muscle fatigue parameters in rats submitted to resistance training (RT). METHODS: Wistar rats were distributed into the following groups: sedentary (SED), exercised (CON), exercised and supplemented with alanine (ALA), glutamine and alanine in their free form (G+A) or l-alanyl-l-glutamine (DIP). Trained groups underwent a ladder-climbing exercise for 8 wk. In the last 3 wk of RT, supplementations were offered in water with a 4% concentration. RESULTS: G+A and DIP supplementation increased the muscle content of glutamine and glutamate. DIP administration increased glycogen and lactate dehydrogenase (LDH) concentrations in muscle, whereas ALA and G+A supplementation reduced plasma LDH and creatine kinase levels. All trained groups presented higher levels of muscle glutathione (GSH) than SED. There was no difference between groups in lactate, xanthine, hypoxanthine, thiobarbituric acid reactive substances, 8-isoprostane and GSH in plasma; adenosine monophosphate deaminase, citrate synthase and monocarboxylate transporters 1 and 4 in muscle; and glycogen and GSH in the liver. Moreover, physical performance did not differ between groups. CONCLUSION: Glutamine and alanine supplementation improved muscle fatigue markers without affecting exercise performance.


Asunto(s)
Alanina/farmacología , Suplementos Dietéticos , Glutamina/farmacología , Fatiga Muscular/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Entrenamiento de Fuerza/métodos , Animales , Músculo Esquelético/efectos de los fármacos , Ratas , Ratas Wistar
4.
Int J Food Sci Nutr ; 70(1): 20-29, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29804478

RESUMEN

Inflammatory bowel diseases (IBD) encompass ulcerative colitis (UC), Crohn's disease (CD) and indeterminate colitis (IC), characterising chronic inflammation in the gastrointestinal tract, associated with changes in the immune system and in the intestinal microbiota. Thus, probiotics may offer an alternative or adjuvant approach to conventional therapy. The present review aims to summarise the mechanisms of action of probiotics in IBD and their therapeutic effects. Most of the studies suggest that probiotics are effective in the treatment of UC, especially when several strains are concomitantly administered. Species of Lactobacillus and Bifidobacterium genres are the most commonly used, and some studies even indicate that it is possible to replace medical therapy with probiotic supplementation. Regarding CD, the results of clinical trials are controversial and do not support the use of probiotics in this disease. In conclusion, probiotic supplementation is a promising adjuvant treatment in UC, but not in CD.


Asunto(s)
Alimentos Fortificados , Enfermedades Inflamatorias del Intestino/terapia , Probióticos/uso terapéutico , Bifidobacterium/fisiología , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/terapia , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/terapia , Bases de Datos Factuales , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Humanos , Inflamación/terapia , Enfermedades Inflamatorias del Intestino/inmunología , Lactobacillus/fisiología , Probióticos/administración & dosificación , Inducción de Remisión
5.
J Diet Suppl ; 16(6): 676-688, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29985713

RESUMEN

Glutamine and alanine are lipogenic and could prevent the effects of resistance training (RT) in reducing adiposity and modulating lipid profile. Thus, we aimed to investigate the effects of RT and glutamine and alanine supplementation, in their free or conjugated form, on relative epididymal adipose tissue (EAT) and brown adipose tissue (BAT) weight, plasma lipid profile, and adipokines in EAT. Thirty Wistar rats, aged two months, were distributed into five groups: control (CTRL), trained (TRN), trained and supplemented with alanine (ALA), glutamine and alanine in their free form (GLN+ALA), or L-alanyl-L-glutamine (DIP). Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive load increase. Supplementations were offered in a solution with a concentration of 4% in the last 21 days of training. Food consumption and body weight gain were decreased in the TRN group compared with CTRL. RT also reduced relative EAT and BAT weight, while supplementations, especially with ALA, increased adipose tissue mass. RT reduced total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) (TRN vs. CTRL), whereas glutamine and alanine supplementation increased TC and LDL-c, impairing lipid profile modulation by physical exercise. RT did not affect the concentrations of adipokines in EAT, but DIP supplementation increased interleukin- (IL-) 6 and IL-10. In conclusion, RT reduced adiposity and modulated lipid profile, whereas glutamine and alanine supplementation increased adiposity and impaired lipid profile but increased the concentration of the anti-inflammatory cytokines IL-6 and IL-10 in EAT.


Asunto(s)
Adipoquinas/sangre , Adiposidad/efectos de los fármacos , Alanina/farmacología , Suplementos Dietéticos , Glutamina/farmacología , Lípidos/sangre , Animales , Condicionamiento Físico Animal/fisiología , Ratas , Ratas Wistar , Entrenamiento de Fuerza
6.
São Paulo; s.n; s.n; 2019. 87 p. graf, tab.
Tesis en Portugués | LILACS | ID: biblio-1015337

RESUMEN

Os aminoácidos de cadeia ramificada (ACR) são considerados indispensáveis, pois não podem ser sintetizados endogenamente, sendo facilmente obtidos pela dieta. Entretanto, em determinadas condições clínicas, tanto a ingestão quando a absorção desses aminoácidos pode estar comprometida, levando ao estado hipercatabólico e prejudicando a função imune. O papel imunomodulador dos ACR tem sido relacionado com a melhora no balanço nitrogenado e o aumento da síntese e proliferação de células imunes, bem como, da síntese de mediadores inflamatórios. Entretanto, o mecanismo pelo qual os ACR exercem essas funções supracitadas ainda não é claro na literatura científica. Desta forma, esse trabalho teve como objetivo avaliar os efeitos da suplementação com ACR sobre os parâmetros inflamatórios e moleculares em macrófagos RAW 264.7 estimulados com lipopolissacarídeo (LPS). As culturas celulares foram distribuídas em cinco grupos: CTL - sem suplementação com ACR; LEU - suplementado com leucina (2 mmol/L); ISO - suplementado com isoleucina (2mmol/L); VAL - suplementado com valina (2 mmol/L) e LIV - suplementado com leucina (2 mmol/L), isoleucina (2 mmol/L) e valina (2 mmol/L). O estado inflamatório foi induzido pela adição de LPS (1 µg/mL) ao meio de cultura, seguindo quatro protocolos de tratamento: PT - pré-tratamento; TA - tratamento agudo; TC - tratamento crônico e TT - tratamento tardio. O ensaio de viabilidade celular foi realizado pelo teste MTT e a dosagem de óxido nítrico (NO) pela reação de Griess. As citocinas pró e anti-inflamatórias, e a prostaglandina E2 (PGE2) foram analisadas pelo método de ELISA. Para a avaliação dos parâmetros moleculares foi utilizado o método de western blotting. Houve aumento da viabilidade celular em todos os grupos suplementados em relação ao grupo controle no TA, no TC e no TT. Acerca da síntese de NO, a suplementação com ACR foi capaz de aumentar esse parâmetro em três dos quatro tratamentos propostos (PT, TA e TC). Em relação à síntese de citocinas pró e anti-inflamatórias, o PT e o TC foram mais eficazes em aumentar esse parâmetro em comparação aos outros tratamentos. Não houve diferença entre os grupos em relação à capacidade de síntese de PGE2 e à fosforilação de proteínas intracelulares. A partir dos resultados obtidos é possível concluir que os ACR contribuem significativamente para a viabilidade celular, bem como para a síntese de mediadores pró e anti-inflamatórios, sendo que o protocolo de suplementação se apresenta como fator determinante para obtenção desses resultados. Apesar da literatura científica atribuir grande parte dos efeitos imunomodulatórios à leucina, os resultados obtidos nesse estudo atribuem relevante potencial imunomodulador à isoleucina, abrindo espaço para um importante tema de estudo


Branched chain amino acids (BCAA) are considered indispensable, since they cannot be endogenously synthesized, being easily obtained by diet. However, in certain clinical conditions, both the intake and absorption of these amino acids may be compromised, leading to the hypercatabolic state and impairing the immune function. The immunomodulatory role of BCAA has been associated with the nitrogen balance improvement and the increase of production and proliferation of immune cells, as well as the synthesis of inflammatory mediators. However, the mechanisms by which BCAA modulate the immune system have not yet been completely elucidated. In this sense, this study aimed to evaluate the effects of BCAA supplementation on intracellular mechanisms and inflammatory parameters in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Cell cultures were distributed into five groups: CTL - without ACR supplementation; LEU - supplemented with leucine (2 mmol/L); ISO - supplemented with isoleucine (2mmol / L); VAL - supplemented with valine (2 mmol/L) and LIV - supplemented with leucine (2 mmol/L), isoleucine (2 mmol/L) and valine (2 mmol/L). The inflammatory state was induced by the addition of LPS (1 µg/ml) to the culture medium, following four treatment protocols: PT - pre-treatment; TA - acute treatment; TC - chronic treatment and TT - late treatment. The cell viability assay was performed by the MTT test and the nitric oxide (NO) dosage by the Griess reaction. Pro- and anti-inflammatory cytokines, and prostaglandin E2 (PGE2) were analyzed by ELISA. For the evaluation of the molecular parameters, the western blotting method was used. There was an increase in cell viability in all supplemented groups in relation to the control group in the TA, TC and TT treatments. Regarding NO synthesis, BCAA supplementation was able to increase NO production in three of the four proposed treatments (PT, TA and TC). In relation to the production of pro- and anti-inflammatory cytokines, PT and CT were more effective in increasing this parameter, compared to the other treatments. There was no difference between groups in relation to PGE2 production and intracellular protein phosphorylation. From the obtained results it is possible to conclude that the BCAA significantly contributed to the cell viability, as well as, for the production of pro and anti-inflammatory mediators, and the supplementation protocol presents as determinant factor to obtain these results. Although the scientific literature attributed a large part of the immunomodulatory effects to leucine, the results obtained in this study attribute relevant immunomodulatory potential to isoleucine, opening space for an important study topic


Asunto(s)
Animales , Masculino , Ratones , Lipopolisacáridos , Aminoácidos de Cadena Ramificada/efectos adversos , Inflamación/dietoterapia , Macrófagos/clasificación
7.
Nutr Rev ; 76(11): 840-856, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124936

RESUMEN

Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Humanos
8.
Nutrire Rev. Soc. Bras. Aliment. Nutr ; 43: 1-9, Mar. 2018. tab
Artículo en Inglés | LILACS | ID: biblio-881551

RESUMEN

BACKGROUND: Probiotic supplementation alters oral microbiota composition and could reduce the risk or treat oral cavity diseases, such as dental caries, which are considered a public health problem. Aim: To summarize the therapeutic effects of probiotics in caries and to verify whether this intervention is capable of replacing conventional treatment in human beings. METHODS: he search of the studies was carried out in the PubMed database in October 2017, without limiting the publication period. The keyword combination used was "Probiotics" and "Dental caries." Forty-two original articles that evaluated the effect of probiotic supplementation on caries treatment in humans were included in the study. RESULTS: Most of the studies evaluated bacteria of the genus Lactobacillus. The main therapeutic effects are related to the reduction of the Streptococcus mutans oral count, increased Lactobacillus oral count, and reduction in the incidence of caries. Evidence on the therapeutic effects of the Bifidobacterium and Streptococcus genres is scarce and conflicting, making it difficult to recommend them for use in clinical practice. Only a few studies administered probiotics without conventional treatments, such as fluoride. Although probiotic supplementation presented interesting properties, the therapeutic effects are more pronounced when probiotic and fluoride are applied together. CONCLUSION: Probiotics, especially of the Lactobacillus genus, can be used as adjuvants, but cannot replace the conventional treatments of caries.


Asunto(s)
Humanos , Masculino , Femenino , Embarazo , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Caries Dental/prevención & control , Caries Dental/terapia , Probióticos/uso terapéutico
9.
Nutrients ; 10(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370091

RESUMEN

Recent evidence suggests that increased brain serotonin synthesis impairs performance in high-intensity intermittent exercise and specific amino acids may modulate this condition, delaying fatigue. This study investigated the effects of glutamine and alanine supplementation on central fatigue markers in rats submitted to resistance training (RT). Wistar rats were distributed in: sedentary (SED), trained (CON), trained and supplemented with alanine (ALA), glutamine and alanine in their free form (G + A), or as dipeptide (DIP). Trained groups underwent a ladder-climbing exercise for eight weeks, with progressive loads. In the last 21 days, supplementations were offered in water with a 4% concentration. Albeit without statistically significance difference, RT decreased liver glycogen, and enhanced the concentrations of plasma glucose, free fatty acids (FFA), hypothalamic serotonin, and ammonia in muscle and the liver. Amino acids affected fatigue parameters depending on the supplementation form. G + A prevented the muscle ammonia increase by RT, whereas ALA and DIP augmented ammonia and glycogen concentrations in muscle. DIP also increased liver ammonia. ALA and G + A reduced plasma FFA, whereas DIP increased this parameter, free tryptophan/total tryptophan ratio, hypothalamic serotonin, and the serotonin/dopamine ratio. The supplementations did not affect physical performance. In conclusion, glutamine and alanine may improve or impair central fatigue markers depending on their supplementation form.


Asunto(s)
Alanina/farmacología , Fatiga/tratamiento farmacológico , Glutamina/farmacología , Condicionamiento Físico Animal , Amoníaco/metabolismo , Animales , Glucemia/metabolismo , Suplementos Dietéticos , Dipéptidos/sangre , Dopamina/sangre , Fatiga/sangre , Ácidos Grasos no Esterificados/sangre , Glucógeno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Serotonina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA