Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 35(15-16): 1142-1160, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34244292

RESUMEN

The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R ) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451-/- ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.


Asunto(s)
Células Madre Embrionarias , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 48(16): 9037-9052, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32735658

RESUMEN

Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.


Asunto(s)
Cromatina/genética , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Acetilación , Animales , Reprogramación Celular/genética , Histonas/genética , Proteínas de Homeodominio/genética , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica/genética , Procesamiento Proteico-Postraduccional/genética , Ubiquitinación/genética
3.
Proc Natl Acad Sci U S A ; 116(42): 21140-21149, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570593

RESUMEN

Retinoic acid-related orphan receptor α (RORα) functions as a transcription factor for various biological processes, including circadian rhythm, cancer, and metabolism. Here, we generate intestinal epithelial cell (IEC)-specific RORα-deficient (RORαΔIEC) mice and find that RORα is crucial for maintaining intestinal homeostasis by attenuating nuclear factor κB (NF-κB) transcriptional activity. RORαΔIEC mice exhibit excessive intestinal inflammation and highly activated inflammatory responses in the dextran sulfate sodium (DSS) mouse colitis model. Transcriptome analysis reveals that deletion of RORα leads to up-regulation of NF-κB target genes in IECs. Chromatin immunoprecipitation analysis reveals corecruitment of RORα and histone deacetylase 3 (HDAC3) on NF-κB target promoters and subsequent dismissal of CREB binding protein (CBP) and bromodomain-containing protein 4 (BRD4) for transcriptional repression. Together, we demonstrate that RORα/HDAC3-mediated attenuation of NF-κB signaling controls the balance of inflammatory responses, and therapeutic strategies targeting this epigenetic regulation could be beneficial to the treatment of chronic inflammatory diseases, including inflammatory bowel disease (IBD).


Asunto(s)
Homeostasis/fisiología , Inflamación/metabolismo , Intestinos/fisiología , Receptores Nucleares Huérfanos/metabolismo , Animales , Epigénesis Genética/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Transcriptoma/fisiología
4.
Nat Commun ; 8(1): 162, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28757615

RESUMEN

The retinoic acid receptor-related orphan receptor-α (RORα) is an important regulator of various biological processes, including cerebellum development, circadian rhythm and cancer. Here, we show that hepatic RORα controls lipid homeostasis by negatively regulating transcriptional activity of peroxisome proliferators-activated receptor-γ (PPARγ) that mediates hepatic lipid metabolism. Liver-specific Rorα-deficient mice develop hepatic steatosis, obesity and insulin resistance when challenged with a high-fat diet (HFD). Global transcriptome analysis reveals that liver-specific deletion of Rorα leads to the dysregulation of PPARγ signaling and increases hepatic glucose and lipid metabolism. RORα specifically binds and recruits histone deacetylase 3 (HDAC3) to PPARγ target promoters for the transcriptional repression of PPARγ. PPARγ antagonism restores metabolic homeostasis in HFD-fed liver-specific Rorα deficient mice. Our data indicate that RORα has a pivotal role in the regulation of hepatic lipid homeostasis. Therapeutic strategies designed to modulate RORα activity may be beneficial for the treatment of metabolic disorders.Hepatic steatosis development may result from dysregulation of lipid metabolism, which is finely tuned by several transcription factors including the PPAR family. Here Kim et al. show that the nuclear receptor RORα inhibits PPARγ-mediated transcriptional activity by interacting with HDAC3 and competing for the promoters of lipogenic genes.


Asunto(s)
Regulación de la Expresión Génica/genética , Histona Desacetilasas/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , PPAR gamma/genética , Animales , Dieta Alta en Grasa , Hígado Graso/genética , Redes Reguladoras de Genes , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina/genética , Lipogénesis/genética , Ratones , Obesidad/genética , PPAR gamma/antagonistas & inhibidores , Regiones Promotoras Genéticas/genética
5.
Cell Stem Cell ; 18(4): 508-21, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26996598

RESUMEN

Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we examine the role of CD82/KAI1 in niche-mediated LT-HSC maintenance. We found that CD82/KAI1 is expressed predominantly on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs). In Cd82(-/-) mice, LT-HSCs were selectively lost as they exited from quiescence and differentiated. Mechanistically, CD82-based TGF-ß1/Smad3 signaling leads to induction of CDK inhibitors and cell-cycle inhibition. The CD82 binding partner DARC/CD234 is expressed on macrophages and stabilizes CD82 on LT-HSCs, promoting their quiescence. When DARC(+) BM macrophages were ablated, the level of surface CD82 on LT-HSCs decreased, leading to cell-cycle entry, proliferation, and differentiation. A similar interaction appears to be relevant for human HSPCs. Thus, CD82 is a functional surface marker of LT-HSCs that maintains quiescence through interaction with DARC-expressing macrophages in the BM stem cell niche.


Asunto(s)
Sistema del Grupo Sanguíneo Duffy , Células Madre Hematopoyéticas , Proteína Kangai-1 , Macrófagos , Receptores de Superficie Celular , Animales , Femenino , Humanos , Masculino , Ratones , Sistema del Grupo Sanguíneo Duffy/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteína Kangai-1/biosíntesis , Proteína Kangai-1/deficiencia , Proteína Kangai-1/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores de Superficie Celular/metabolismo
6.
Nat Commun ; 6: 6810, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25857206

RESUMEN

The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.


Asunto(s)
ADN Helicasas/genética , Epigénesis Genética , Células Madre Embrionarias de Ratones/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , ARN Largo no Codificante/genética , Animales , Diferenciación Celular , Cromatina/química , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ADN Helicasas/deficiencia , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Factor 3 de Transcripción de Unión a Octámeros/deficiencia , Receptores Patched , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
7.
Biochem Biophys Res Commun ; 447(1): 44-50, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24680824

RESUMEN

Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Based on high expression in lymphoid tissues, we examined whether Pontin has a T cell-specific function. We generated Pontin(f/f);Lck-Cre mice, in which Pontin can be conditionally deleted in T cells and then explored T cell-specific function of Pontin in vivo. Here, we show that specific abrogation of Pontin expression in T cells almost completely blocked development of αß T cells at the ß-selection checkpoint by inducing cell apoptosis indicating that Pontin is essential for early T cell development. Pontin-deficient thymocytes show a comparable expression level of T cell receptor (TCR)ß chain, but have enhanced activation of p53 and Notch signaling compared to wild-type thymocytes. Intriguingly, the developmental block of αß T cells can be partially rescued by loss of p53. Together, our data demonstrate a novel role of Pontin as a crucial regulator in pre-TCR signaling during T cell development.


Asunto(s)
ADN Helicasas/fisiología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/fisiología , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Diferenciación Celular/inmunología , ADN Helicasas/genética , Ratones , Ratones Noqueados , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/fisiología
8.
Mol Cell ; 53(5): 791-805, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24582500

RESUMEN

The circadian clock is a self-sustaining oscillator that controls daily rhythms. For the proper circadian gene expression, dynamic changes in chromatin structure are important. Although chromatin modifiers have been shown to play a role in circadian gene expression, the in vivo role of circadian signal-modulated chromatin modifiers at an organism level remains to be elucidated. Here, we provide evidence that the lysine-specific demethylase 1 (LSD1) is phosphorylated by protein kinase Cα (PKCα) in a circadian manner and the phosphorylated LSD1 forms a complex with CLOCK:BMAL1 to facilitate E-box-mediated transcriptional activation. Knockin mice bearing phosphorylation-defective Lsd1(SA/SA) alleles exhibited altered circadian rhythms in locomotor behavior with attenuation of rhythmic expression of core clock genes and impaired phase resetting of circadian clock. These data demonstrate that LSD1 is a key component of the molecular circadian oscillator, which plays a pivotal role in rhythmicity and phase resetting of the circadian clock.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Oxidorreductasas N-Desmetilantes/metabolismo , Proteína Quinasa C-alfa/metabolismo , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Conducta Animal , Proteínas CLOCK/metabolismo , Inmunoprecipitación de Cromatina , Histona Demetilasas , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Oscilometría , Oxidorreductasas N-Desmetilantes/genética , Fosforilación , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Núcleo Supraquiasmático/metabolismo , Factores de Tiempo
9.
Biochem Biophys Res Commun ; 415(4): 720-6, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22085717

RESUMEN

Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis without affecting primary tumorigenesis. The regulatory mechanism of BRMS1 at the protein level has not been revealed until recently. Here, we found that cullin 3 (Cul3), a component of E3 ubiquitin ligase, is a new binding partner of BRMS1 and the interaction between BRMS1 and Cul3 is mediated by the SPOP adaptor protein. Intriguingly, BRMS1 turns out to be a potent substrate that is ubiquitinated by the Cul3-SPOP complex. Knockdown of SPOP increases the level of BRMS1 protein and represses the expression of BRMS1 repressive target genes such as OPN and uPA in breast cancer cells. These results suggest that the novel regulatory mechanism of BRMS1 by Cul3-SPOP complex is important for breast cancer progression.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas Cullin/genética , Femenino , Células HEK293 , Humanos , Estabilidad Proteica , Ubiquitinación
10.
Biochem Biophys Res Commun ; 393(1): 179-84, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20123085

RESUMEN

KAI1 is a metastasis suppressor gene known to inhibit cancer metastasis without affecting primary tumorigenicity. Although KAI1 expression has been reported to undergo transcriptional regulation, how its expression is up- or down-regulated by specific upstream signaling pathways has not been studied in detail. In this study, we characterized the regulatory elements within the 500bp upstream region of mouse KAI1 gene and identified a functional hypoxia-response element (HRE) within the promoter region. Hypoxia-dependent induction of KAI1 was directly mediated by hypoxia-inducible factor (HIF)-1alpha binding on the promoter, which subsequently caused increased recruitment of RNA polymerase II for transcriptional activation. The failure of HIF-1alpha recruitment to the KAI1 promoter was observed in Hif-1alpha knockout mouse embryonic fibroblasts. Furthermore, KAI1 protein synthesis was markedly increased in ischemic tissues, suggesting that KAI1 is a hypoxia target gene in vivo.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/genética , Proteína Kangai-1/genética , Oxígeno/metabolismo , Activación Transcripcional , Animales , Hipoxia de la Célula/genética , Línea Celular , Humanos , Hipoxia/metabolismo , Ratones , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Células 3T3 NIH , Regiones Promotoras Genéticas , Elementos de Respuesta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA