Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37808637

RESUMEN

There has been a dramatic increase in the identification of non-conical translation and a significant expansion of the protein-coding genome and proteome. Among the strategies used to identify novel small ORFs (smORFs), Ribosome profiling (Ribo-Seq) is the gold standard for the annotation of novel coding sequences by reporting on smORF translation. In Ribo-Seq, ribosome-protected footprints (RPFs) that map to multiple sites in the genome are computationally removed since they cannot unambiguously be assigned to a specific genomic location, or to a specific transcript in the case of multiple isoforms. Furthermore, RPFs necessarily result in short (25-34 nucleotides) reads, increasing the chance of ambiguous and multi-mapping alignments, such that smORFs that reside in these regions cannot be identified by Ribo-Seq. Here, we show that the inclusion of proteogenomics to create a Ribosome Profiling and Proteogenomics Pipeline (RP3) bypasses this limitation to identify a group of microprotein-encoding smORFs that are missed by current Ribo-Seq pipelines. Moreover, we show that the microproteins identified by RP3 have different sequence compositions from the ones identified by Ribo-Seq-only pipelines, which can affect proteomics identification. In aggregate, the development of RP3 maximizes the detection and confidence of protein-encoding smORFs and microproteins.

2.
Acta Physiol (Oxf) ; 238(1): e13947, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36755506

RESUMEN

AIM: Postprandial secretion of the appetite-inhibiting hormones, glucagon-like peptide-1 (GLP-1), and peptide YY are reduced with obesity. It is unclear if the reduced secretion persists following weight loss (WL), if other appetite-inhibiting hormones are also reduced, and if so whether reduced secretion results from intrinsic changes in the gut. METHODS: To address whether WL may restore secretion of GLP-1 and other appetite-inhibiting hormones, we performed a gut perfusion study of the small intestine in diet-induced obese (DIO) rats after WL. A 20% weight loss (means ± SEM (g): 916 ± 53 vs. 703 ± 35, p < 0.01, n = 7) was induced by calorie restriction, and maintained stable for ≥7 days prior to gut perfusion to allow for complete renewal of enteroendocrine cells. Age-matched DIO rats were used as comparator. Several gut hormones were analyzed from the venous effluent, and gene expression was performed on gut tissue along the entire length of the intestine. RESULTS: Secretion of cholecystokinin, gastrin, glucose-dependent insulinotropic peptide, GLP-1, neurotensin, and somatostatin was not affected by WL during basal conditions (p ≥ 0.25) or in response to macronutrients and bile acids (p ≥ 0.14). Glucose absorption was indistinguishable following WL. The expression of genes encoding the studied peptides, macronutrient transporters (glucose, fructose, and di-/tripeptides) and bile acid receptors did also not differ between DIO and WL groups. CONCLUSIONS: These data suggest that the attenuated postprandial responses of GLP-1, as well as reduced responses of other appetite-inhibiting gut hormones, in people living with obesity may persist after weight loss and may contribute to their susceptibility for weight regain.


Asunto(s)
Apetito , Restricción Calórica , Ratas , Animales , Péptido 1 Similar al Glucagón/metabolismo , Pérdida de Peso , Obesidad/metabolismo , Intestino Delgado , Glucosa
3.
Cell Metab ; 35(1): 166-183.e11, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599300

RESUMEN

Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.


Asunto(s)
Adipocitos Blancos , Tejido Adiposo Pardo , Humanos , Animales , Ratones , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/metabolismo , Sistemas de Lectura Abierta/genética , Tejido Adiposo Blanco/metabolismo , Adipocitos Marrones/metabolismo , Micropéptidos
4.
Mol Metab ; 53: 101258, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34023483

RESUMEN

OBJECTIVE: Acyl-ghrelin regulates eating, body weight, blood glucose, and GH secretion upon binding to its receptor GHSR (growth hormone secretagogue receptor; ghrelin receptor). GHSR is distributed in several brain regions and some peripheral cell-types including pituitary somatotrophs. The objective of the current study was to determine the functional significance of acyl-ghrelin's action on GHSR-expressing somatotrophs in mediating GH secretion and several of acyl-ghrelin's metabolic actions. METHODS: GH-IRES-Cre mice and loxP-flanked (floxed) GHSR mice were newly developed and then crossed to one another to generate mice that lacked GHSR selectively from somatotrophs. Following validation of mice with somatotroph-selective GHSR deletion, metabolic responses of these mice and control littermates were assessed following both acute and chronic acyl-ghrelin administration, a 24-h fast, and a prolonged 60% chronic caloric restriction protocol modeling starvation. RESULTS: In mice with somatotroph-selective GHSR deletion, a single peripheral injection of acyl-ghrelin failed to induce GH secretion or increase food intake, unlike wild-type and other littermate control groups. However, the usual acute blood glucose increase in response to the acyl-ghrelin bolus was preserved. Similarly, chronic s.c. acyl-ghrelin administration to mice with somatotroph-selective GHSR deletion failed to increase plasma GH, food intake, or body weight. Physiologically elevating plasma acyl-ghrelin via a 24-h fast also failed to raise plasma GH and resulted in a limited hyperphagic response upon food reintroduction in mice with somatotroph-selective GHSR deletion, although those mice nonetheless did not exhibit an exaggerated reduction in blood glucose. Physiologically elevating plasma acyl-ghrelin via a 15-day caloric restriction protocol which provided only 40% of usual daily calories failed to raise plasma GH in mice with somatotroph-selective GHSR deletion, although those mice did not exhibit life-threatening hypoglycemia. CONCLUSIONS: These results reveal that direct engagement of GHSR-expressing somatotrophs is required for a peripheral ghrelin bolus to acutely stimulate GH secretion and the actions of chronic acyl-ghrelin delivery and physiological plasma acyl-ghrelin elevations to increase plasma GH. These results also suggest that actions of acyl-ghrelin to increase food intake and body weight are reliant on direct activation of GHSRs expressed on somatotrophs. Furthermore, these results suggest that the glucoregulatory actions of acyl-ghrelin - in particular, its actions to raise blood glucose when acutely administered, prevent small blood glucose drops following a 24-h fast, and avert life-threatening hypoglycemia during an acute-on-chronic caloric restriction protocol - do not depend on GHSR expression by somatotrophs.


Asunto(s)
Ghrelina/metabolismo , Hormona del Crecimiento/metabolismo , Animales , Glucemia/metabolismo , Ghrelina/análogos & derivados , Ratones , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo
5.
J Comp Neurol ; 529(1): 111-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32356570

RESUMEN

While autonomic ganglia have been extensively studied in rats instead of mice, there is renewed interest in the anatomy of the mouse autonomic nervous system. This study examined the prevalence and anatomical features of a cell bridge linking two autonomic ganglia of the neck, namely, the nodose ganglion (NG) and the superior cervical ganglion (SCG) in a cohort of C57BL/6J mice. We identified a cell bridge between the NG and the cranial pole of the SCG. This cell bridge was tubular shaped with an average length and width of 700 and 240 µm, respectively. The cell bridge was frequently unilateral and significantly more prevalent in the ganglionic masses from males (38%) than females (21%). On each of its extremities, it contained a mixed of vagal afferents and postganglionic sympathetic neurons. The two populations of neurons abruptly replaced each other in the middle of the cell bridge. We examined the mRNA expression for selected autonomic markers in samples of the NG with or without cell bridge. Our results indicated that the cell bridge was enriched in both markers of postganglionic sympathetic and vagal afferents neurons. Lastly, using FluoroGold microinjection into the NG, we found that the existence of a cell bridge may occasionally lead to the inadvertent contamination of the SCG. In summary, this study describes the anatomy of a cell bridge variant consisting of the fusion of the mouse NG and SCG. The practical implications of our observations are discussed with respect to studies of the mouse vagal afferents, an area of research of increasing popularity.


Asunto(s)
Ganglio Nudoso/anatomía & histología , Ganglio Cervical Superior/anatomía & histología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ganglio Nudoso/citología , Prevalencia , Ganglio Cervical Superior/citología
6.
Sci Adv ; 5(5): eaav4832, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31149633

RESUMEN

Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.org) but are often aberrantly activated in cancer. Depletion of Mage-a genes disrupts spermatogonial stem cell maintenance and impairs repopulation efficiency in vivo. Exposure of Mage-a knockout mice to genotoxic stress or long-term starvation that mimics famine in nature causes defects in spermatogenesis, decreased testis weights, diminished sperm production, and reduced fertility. Last, human MAGE-As are activated in many cancers where they promote fuel switching and growth of cells. These results suggest that mammalian-specific MAGE genes have evolved to protect the male germline against environmental stress, ensure reproductive success under non-optimal conditions, and are hijacked by cancer cells.


Asunto(s)
Antígenos Específicos del Melanoma/genética , Neoplasias/genética , Espermatogénesis/genética , Estrés Fisiológico/genética , Testículo/fisiología , Animales , Daño del ADN , Desoxiglucosa/farmacología , Evolución Molecular , Femenino , Regulación Neoplásica de la Expresión Génica , Células Germinativas , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatogonias/efectos de los fármacos , Inanición
7.
Cell Rep ; 25(2): 271-277.e4, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304667

RESUMEN

Obesity is associated with many complications, including type 2 diabetes and painful neuropathy. There is no cure or prevention for obesity-induced pain, and the neurobiology underlying the onset of the disease is still obscure. In this study, we observe that western diet (WD)-fed mice developed early allodynia with an increase of ER stress markers in the sensory neurons of the dorsal root ganglia (DRG). Using cell-specific approaches, we demonstrate that neuronal liver X receptor (LXR) activation delays ER stress and allodynia in WD-fed mice. Our findings suggest that lipid-binding nuclear receptors expressed in the sensory neurons of the DRG play a role in the onset of obesity-induced hypersensitivity. The LXR and lipid-sensor pathways represent a research avenue to identify targets to prevent debilitating complications affecting the peripheral nerve system in obesity.


Asunto(s)
Estrés del Retículo Endoplásmico , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/etiología , Receptores X del Hígado/fisiología , Obesidad/complicaciones , Células Receptoras Sensoriales/efectos de los fármacos , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Benzoatos/farmacología , Bencilaminas/farmacología , Dieta Occidental/efectos adversos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Receptores X del Hígado/agonistas , Masculino , Ratones , Ratones Noqueados , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
8.
Mol Metab ; 6(10): 1081-1091, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031710

RESUMEN

OBJECTIVE AND METHODS: Metabolic viscera and their vasculature are richly innervated by peripheral sensory neurons. Here, we examined the metabolic and inflammatory profiles of mice with selective ablation of all Nav1.8-expressing primary afferent neurons. RESULTS: While mice lacking sensory neurons displayed no differences in body weight, food intake, energy expenditure, or body composition compared to controls on chow diet, ablated mice developed an exaggerated inflammatory response to high-fat feeding characterized by bouts of weight loss, splenomegaly, elevated circulating interleukin-6 and hepatic serum amyloid A expression. This phenotype appeared to be directly mediated by the ingestion of saturated lipids. CONCLUSIONS: These data demonstrate that the Nav1.8-expressing afferent neurons are not essential for energy balance but are required for limiting the acute phase response caused by an obesogenic diet.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Grasas de la Dieta/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Animales , Composición Corporal , Peso Corporal , Dieta Alta en Grasa , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Ratones , Neuronas Aferentes/metabolismo , Obesidad/etiología , Células Receptoras Sensoriales/metabolismo , Vísceras/metabolismo , Pérdida de Peso
9.
Front Neuroanat ; 9: 120, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26388745

RESUMEN

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that was originally identified as a regulator of peroxisome proliferation and adipocyte differentiation. Emerging evidence suggests that functional PPARγ signaling also occurs within the hypothalamus. However, the exact distribution and identities of PPARγ-expressing hypothalamic cells remains under debate. The present study systematically mapped PPARγ mRNA expression in the adult mouse brain using in situ hybridization histochemistry. PPARγ mRNA was found to be expressed at high levels outside the hypothalamus including the neocortex, the olfactory bulb, the organ of the vasculosum of the lamina terminalis (VOLT), and the subfornical organ. Within the hypothalamus, PPARγ was present at moderate levels in the suprachiasmatic nucleus (SCh) and the ependymal of the 3rd ventricle. In all examined feeding-related hypothalamic nuclei, PPARγ was expressed at very low levels that were close to the limit of detection. Using qPCR techniques, we demonstrated that PPARγ mRNA expression was upregulated in the SCh in response to fasting. Double in situ hybridization further demonstrated that PPARγ was primarily expressed in neurons rather than glia. Collectively, our observations provide a comprehensive map of PPARγ distribution in the intact adult mouse hypothalamus.

10.
Elife ; 42015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26076474

RESUMEN

Peripheral neural sensory mechanisms play a crucial role in metabolic regulation but less is known about the mechanisms underlying vagal sensing itself. Recently, we identified an enrichment of liver X receptor alpha and beta (LXRα/ß) in the nodose ganglia of the vagus nerve. In this study, we show mice lacking LXRα/ß in peripheral sensory neurons have increased energy expenditure and weight loss when fed a Western diet (WD). Our findings suggest that the ability to metabolize and sense cholesterol and/or fatty acids in peripheral neurons is an important requirement for physiological adaptations to WDs.


Asunto(s)
Adaptación Fisiológica/fisiología , Dieta Occidental , Metabolismo Energético/fisiología , Ganglio Nudoso/fisiología , Receptores Nucleares Huérfanos/deficiencia , Células Receptoras Sensoriales/metabolismo , Análisis de Varianza , Animales , Calorimetría Indirecta , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Pérdida de Peso/fisiología
11.
Mol Endocrinol ; 29(2): 213-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25495872

RESUMEN

Hormones such as fibroblast growth factor 21 (FGF21) and glucocorticoids (GCs) play crucial roles in coordinating the adaptive starvation response. Here we examine the interplay between these hormones. It was previously shown that FGF21 induces corticosterone levels in mice by acting on the brain. We now show that this induces the expression of genes required for GC synthesis in the adrenal gland. FGF21 also increases corticosterone secretion from the adrenal in response to ACTH. We further show that the relationship between FGF21 and GCs is bidirectional. GCs induce Fgf21 expression in the liver by acting on the GC receptor (GR). The GR binds in a ligand-dependent manner to a noncanonical GR response element located approximately 4.4 kb upstream of the Fgf21 transcription start site. The GR cooperates with the nuclear fatty acid receptor, peroxisome proliferator-activated receptor-α, to stimulate Fgf21 transcription. GR and peroxisome proliferator-activated receptor-α ligands have additive effects on Fgf21 expression both in vivo and in primary cultures of mouse hepatocytes. We conclude that FGF21 and GCs regulate each other's production in a feed-forward loop and suggest that this provides a mechanism for bypassing negative feedback on the hypothalamic-pituitary-adrenal axis to allow sustained gluconeogenesis during starvation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Glucocorticoides/farmacología , Corteza Suprarrenal/citología , Corteza Suprarrenal/metabolismo , Hormona Adrenocorticotrópica/farmacología , Animales , Emparejamiento Base , Sitios de Unión , Cromatina/metabolismo , Corticosterona/biosíntesis , Dexametasona/farmacología , Sitios Genéticos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , PPAR alfa/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Sitio de Iniciación de la Transcripción , Activación Transcripcional/efectos de los fármacos
12.
EMBO Mol Med ; 6(12): 1610-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25422356

RESUMEN

The heart requires a continuous supply of energy but has little capacity for energy storage and thus relies on exogenous metabolic sources. We previously showed that cardiac MED13 modulates systemic energy homeostasis in mice. Here, we sought to define the extra-cardiac tissue(s) that respond to cardiac MED13 signaling. We show that cardiac overexpression of MED13 in transgenic (MED13cTg) mice confers a lean phenotype that is associated with increased lipid uptake, beta-oxidation and mitochondrial content in white adipose tissue (WAT) and liver. Cardiac expression of MED13 decreases metabolic gene expression in the heart but enhances them in WAT. Although exhibiting increased energy expenditure in the fed state, MED13cTg mice metabolically adapt to fasting. Furthermore, MED13cTg hearts oxidize fuel that is readily available, rendering them more efficient in the fed state. Parabiosis experiments in which circulations of wild-type and MED13cTg mice are joined, reveal that circulating factor(s) in MED13cTg mice promote enhanced metabolism and leanness. These findings demonstrate that MED13 acts within the heart to promote systemic energy expenditure in extra-cardiac energy depots and point to an unexplored metabolic communication system between the heart and other tissues.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Complejo Mediador/metabolismo , Delgadez/metabolismo , Animales , Metabolismo Energético , Femenino , Humanos , Masculino , Complejo Mediador/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Miocardio/metabolismo , Transducción de Señal , Delgadez/genética
13.
Cell Metab ; 20(4): 670-7, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25130400

RESUMEN

The mechanism by which pharmacologic administration of the hormone FGF21 increases energy expenditure to cause weight loss in obese animals is unknown. Here we report that FGF21 acts centrally to exert its effects on energy expenditure and body weight in obese mice. Using tissue-specific knockout mice, we show that ßKlotho, the obligate coreceptor for FGF21, is required in the nervous system for these effects. FGF21 stimulates sympathetic nerve activity to brown adipose tissue through a mechanism that depends on the neuropeptide corticotropin-releasing factor. Our findings provide an unexpected mechanistic explanation for the strong pharmacologic effects of FGF21 on energy expenditure and weight loss in obese animals.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hipotálamo/metabolismo , Proteínas Klotho , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Ratones Transgénicos , ARN Mensajero/metabolismo , Sistema Nervioso Simpático/metabolismo , Termogénesis/genética
14.
Cell Metab ; 19(4): 722-30, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24703703

RESUMEN

The vagus nerve innervates visceral organs providing a link between key metabolic cues and the CNS. However, it is not clear whether vagal neurons can directly respond to changing lipid levels and whether altered "lipid sensing" by the vagus nerve regulates energy balance. In this study, we systematically profiled the expression of all known nuclear receptors in laser-captured nodose ganglion (NG) neurons. In particular, we found PPARγ expression was reduced by high-fat-diet feeding. Deletion of PPARγ in Phox2b neurons promoted HFD-induced thermogenesis that involved the reprograming of white adipocyte into a brown-like adipocyte cell fate. Finally, we showed that PPARγ in NG neurons regulates genes necessary for lipid metabolism and those that are important for synaptic transmission. Collectively, our findings provide insights into how vagal afferents survey peripheral metabolic cues and suggest that the reduction of PPARγ in NG neurons may serve as a protective mechanism against diet-induced weight gain.


Asunto(s)
Dieta Alta en Grasa , Metabolismo de los Lípidos/fisiología , Neuronas/metabolismo , Ganglio Nudoso/citología , PPAR gamma/metabolismo , Termogénesis/fisiología , Adipocitos/citología , Animales , Diferenciación Celular/fisiología , Eliminación de Gen , Regulación de la Expresión Génica/fisiología , Captura por Microdisección con Láser , Metabolismo de los Lípidos/genética , Ratones , Ratones Transgénicos , Modelos Biológicos , Neuronas/fisiología , Ganglio Nudoso/cirugía , PPAR gamma/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
EMBO Mol Med ; 6(4): 436-8, 2014 04.
Artículo en Inglés | MEDLINE | ID: mdl-24623378

RESUMEN

The heart has been recognized as an endocrine organ for over 30 years (de Bold, 2011); however, little is known about how the heart communicates with other organs in the body, and even less is known about this process in the diseased heart. In this issue of EMBO Molecular Medicine, Magida and Leinwand (2014) introduce the concept that a primary genetic defect in the heart results in aberrant hepatic lipid metabolism, which consequently exacerbates hypertrophic cardiomyopathy (HCM). This study provides evidence in support of the hypothesis that crosstalk occurs between the heart and liver, and that this becomes disrupted in the diseased state.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/metabolismo , Hígado/metabolismo , Miocardio/metabolismo , Animales , Femenino , Masculino
16.
Nat Med ; 19(9): 1153-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23933983

RESUMEN

Preventing reproduction during nutritional deprivation is an adaptive process that is conserved and essential for the survival of species. In mammals, the mechanisms that inhibit fertility during starvation are complex and incompletely understood. Here we show that exposure of female mice to fibroblast growth factor 21 (FGF21), a fasting-induced hepatokine, mimics infertility secondary to starvation. Mechanistically, FGF21 acts on the suprachiasmatic nucleus (SCN) in the hypothalamus to suppress the vasopressin-kisspeptin signaling cascade, thereby inhibiting the proestrus surge in luteinizing hormone. Mice lacking the FGF21 co-receptor, ß-Klotho, in the SCN are refractory to the inhibitory effect of FGF21 on female fertility. Thus, FGF21 defines an important liver-neuroendocrine axis that modulates female reproduction in response to nutritional challenge.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Infertilidad Femenina/metabolismo , Proteínas de la Membrana/metabolismo , Reproducción , Inanición/metabolismo , Animales , Metabolismo Energético , Femenino , Hipotálamo , Kisspeptinas/antagonistas & inhibidores , Kisspeptinas/metabolismo , Proteínas Klotho , Hormona Luteinizante/biosíntesis , Hormona Luteinizante/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proestro/fisiología , Transducción de Señal , Núcleo Supraquiasmático , Vasopresinas/antagonistas & inhibidores , Vasopresinas/metabolismo
17.
Nat Med ; 19(9): 1147-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23933984

RESUMEN

Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism and repress growth; however, the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell-surface receptor composed of one of three FGF receptors (FGFR1c, FGFR2c or FGFR3c) in complex with ß-Klotho, a single-pass transmembrane protein that is enriched in metabolic tissues. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity and alters circadian behavior, which are all features of the adaptive starvation response. These effects are mediated through ß-Klotho expression in the suprachiasmatic nucleus of the hypothalamus and the dorsal vagal complex of the hindbrain. Mice lacking the gene encoding ß-Klotho (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.


Asunto(s)
Ritmo Circadiano/fisiología , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso/metabolismo , Animales , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Inanición , Núcleo Supraquiasmático/metabolismo
18.
Mol Endocrinol ; 27(4): 598-605, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23504956

RESUMEN

The differential expression and secretion of the neuropeptide kisspeptin from neurons in the arcuate (Arc) and anteroventral periventricular (AVPV) nuclei of the hypothalamus coordinate the temporal release of pituitary gonadotropins that control the female reproductive cycle. However, the molecular basis for this differential regulation is incompletely understood. Here, we report that liver receptor homolog-1 (LRH-1), a member of the nuclear receptor superfamily, is expressed in kisspeptin neurons in the Arc but not in the AVPV in female mice. LRH-1 binds directly to the kisspeptin (Kiss1) promoter and stimulates Kiss1 transcription. Deletion of LRH-1 from kisspeptin neurons in mice decreased Kiss1 expression in the Arc, leading to reduced plasma FSH levels, dysregulated follicle maturation, and prolongation of the estrous cycle. Conversely, overexpression of LRH-1 in kisspeptin neurons increased Arc Kiss1 expression and plasma FSH concentrations. These studies provide a molecular basis for the differential regulation of basal kisspeptin expression in Arc and AVPV neurons and reveal a prominent role for LRH-1 in hypothalamus in regulating the female reproductive axis.


Asunto(s)
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neuropéptidos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Reproducción , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Femenino , Kisspeptinas/genética , Ratones , Neuronas/metabolismo , Neuropéptidos/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
19.
Cell Metab ; 16(3): 387-93, 2012 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-22958921

RESUMEN

Fibroblast growth factor 21 (FGF21) is a fasting-induced hepatokine that has potent pharmacologic effects in mice, which include improving insulin sensitivity and blunting growth. The single-transmembrane protein ßKlotho functions as a coreceptor for FGF21 in vitro. To determine if ßKlotho is required for FGF21 action in vivo, we generated whole-body and adipose tissue-selective ßKlotho-knockout mice. All of the effects of FGF21 on growth and metabolism were lost in whole-body ßKlotho-knockout mice. Selective elimination of ßKlotho in adipose tissue blocked the acute insulin-sensitizing effects of FGF21. Taken together, these data demonstrate that ßKlotho is essential for FGF21 activity and that ßKlotho in adipose tissue contributes to the beneficial metabolic actions of FGF21.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Crecimiento/fisiología , Resistencia a la Insulina/fisiología , Proteínas de la Membrana/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Cromatografía en Gel , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/farmacología , Factores de Crecimiento de Fibroblastos/fisiología , Prueba de Tolerancia a la Glucosa , Crecimiento/genética , Resistencia a la Insulina/genética , Proteínas Klotho , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados
20.
Mol Cell ; 47(6): 851-62, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-22959271

RESUMEN

Cells continually assess their energy and nutrient state to maintain growth and survival and engage necessary homeostatic mechanisms. Cell-autonomous responses to the fed state require the surveillance of the availability of amino acids and other nutrients. The mammalian target of rapamycin complex 1 (mTORC1) integrates information on nutrient and amino acid availability to support protein synthesis and cell growth. We identify the G protein-coupled receptor (GPCR) T1R1/T1R3 as a direct sensor of the fed state and amino acid availability. Knocking down this receptor, which is found in most tissues, reduces the ability of amino acids to signal to mTORC1. Interfering with this receptor alters localization of mTORC1, downregulates expression of pathway inhibitors, upregulates key amino acid transporters, blocks translation initiation, and induces autophagy. These findings reveal a mechanism for communicating amino acid availability through a GPCR to mTORC1 in mammals.


Asunto(s)
Autofagia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Aminoácidos/metabolismo , Animales , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Biosíntesis de Proteínas , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...