Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38717304

RESUMEN

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Asunto(s)
Simulación de Dinámica Molecular , Canal Liberador de Calcio Receptor de Rianodina , Zinc , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Zinc/química , Zinc/metabolismo , Ligandos , Calcio/química , Calcio/metabolismo , Teoría Funcional de la Densidad , Sitios de Unión , Unión Proteica , Dedos de Zinc , Cafeína/química , Cafeína/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Humanos
2.
J Mol Graph Model ; 122: 108487, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086515

RESUMEN

Ongoing global pandemic caused by coronavirus (COVID-19) requires urgent development of vaccines, treatments, and diagnostic tools. Open reading frame 3a (ORF3a) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered to be a potential drug target for COVID-19 treatment. ORF3a is an accessory protein that plays a significant role in virus-host interactions and in facilitating host immune responses. Using putrescine, spermidine and spermine, an aliphatic polyamine for the activity suppression of ORF3a appears to be a promising approach in finding new targets for drug design. In this study, we explored the possible binding poses of polyamines to the ORF3a protein using a combination of various computational approaches i.e. pocket prediction, blind and site-specific molecular docking, molecular dynamics and ligand flooding simulations. The results showed that the tip of cytoplasmic domain and the upper tunnel of transmembrane domain of ORF3a provide a suitable binding site specific for the polyamines. MD simulations revealed the stability of spermidine binding in the upper tunnel pocket of ORF3a through salt bridge and hydrogen bond interactions between the amine groups of the ligand and negatively charged residues of ORF3a. These findings can be helpful in designing new therapeutic drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Poliaminas , Sistemas de Lectura Abierta , Espermidina , Tratamiento Farmacológico de COVID-19 , Ligandos
3.
Biophys Chem ; 287: 106829, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35635893

RESUMEN

The viral main protease (Mpro) from a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a key enzyme essential for viral replication and has become an attractive target for antiviral drug development. The Mpro forms a functional dimer and exhibits a pH-dependent enzyme activity and dimerization. Here, we report a molecular dynamics (MD) investigation to gain insights into the structural stability of the enzyme dimer at neutral and acidic pH. Our data shows larger changes in structure of the protein with the acidic pH than that with the neutral pH. Structural analysis of MD trajectories reveals a substantial increase in intersubunit separation, the loss of domain contacts, binding free energy and interaction energy of the dimer which implies the protein instability and tendency of dimer dissociation at acidic pH. The loss in the interaction energy is mainly driven by electrostatic interactions. We have identified the intersubunit hydrogen-bonding residues involved in the decreased dimer stability. These findings may be helpful for rational drug design and target evaluation against COVID-19.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , SARS-CoV-2/metabolismo
4.
Biophys Chem ; 277: 106649, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147849

RESUMEN

Voltage sensor domain (VSD) in channel and non-channel membrane proteins shares a common function in the detection of changes in the transmembrane electric potential. The VSD is made of four helical transmembrane segments (S1-S4) that form a structurally conserved scaffold through inter-transmembrane residue-residue interactions. Details about these interactions are yet to be fully understood in the context of the unique structural and physical characteristics of the voltage sensor unit. In this study, molecular dynamics simulations were carried out to investigate transmembrane helix-helix interactions via residue-based nonbonding energies using the activated and resting state conformations of VSD from Hv1, CiVSP, KvAP and NavAb. Inter-transmembrane interaction energies within the VSD were determined. Analysis of electrostatic and van der Waals components revealed the strengths and weaknesses of the interactions between each pair of transmembrane segments. In all cases the S4 helix had the highest electrostatic contribution to favor the key role as the voltage sensitive segment. Electrostatic interactions for the S1-S2 pair as well as the S1-S3 pair were relatively weak. Van der Waal interaction energies between adjacent segments were on average greater than that between diagonally opposite segments. Salt bridge interactions between S4-arginines and the negatively charged residues in other segments appear to contribute more to stabilizing the energy than the van der Waals interactions between nonpolar residues. The overall behavior of residue-residue contacts is similar among the transmembrane domains, reflecting the common inter- transmembrane interaction pattern in the VSD. In addition, analysis of the residue positions suggested that subtle differences in the orientation of the salt-bridges can be attributed to the difference in the inter-transmembrane interaction strengths inside the VSDs.


Asunto(s)
Simulación de Dinámica Molecular , Activación del Canal Iónico , Potenciales de la Membrana , Conformación Proteica , Electricidad Estática
5.
J Phys Chem B ; 123(13): 2864-2873, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30854855

RESUMEN

Voltage-gated proton-selective channels (Hv1) mediate proton extrusion during intracellular acidification. Hv1 is gated by the proton electrochemical gradient. Intracellular ionizable residues in Hv1 have been proposed to serve as proton-binding sites for pH-dependent gating, but detailed descriptions remain unclear. Here, molecular dynamics (MD) simulations were performed to investigate the effect of ionization states of charged residues on the X-ray structure of Hv1. Modification of the protonation state of acidic residues affected the resting conformation of Hv1 by disrupting salt bridges between S4 and the other segments. Upon protonation, conformational changes enabled the displacement of the S4 arginines toward the extracellular side and increased the mobility of hydrophobic residues at the gate. The aqueous crevice was considerably wider with increased hydration in the pore. Solvation free energies of the pore residues were low at the extra- and intracellular entrances, whereas the narrowest region exhibited the energy barrier for water translocation. Our MD data showed that water molecules in the upper and lower pore oriented differently. In neutral pH, the pore water oriented its dipole pointing away from the voltage-sensing domain center, whereas the opposite direction of the water dipole was observed in acidic pH.


Asunto(s)
Canales Iónicos/química , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica
6.
J Phys Chem B ; 122(3): 1037-1048, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290112

RESUMEN

The voltage-gated proton-selective channel (Hv1) conducts protons in response to changes in membrane potential. The Hv1 protein forms dimers in the membrane. Crystal structures of Hv1 channels have revealed that the primary contacts between the two monomers are in the C-terminal domain (CTD), which forms a coiled-coil structure. The role of Hv1-CTD in channel assembly and activity is not fully understood. Here, molecular dynamics (MD) simulations of full-length and truncated CTD models of human and mouse Hv1 channels reveal a strong contribution of the CTD to the packing of the transmembrane domains. Simulations of the CTD models highlight four fundamental interactions of the key residues contributing to dimer stability. These include salt bridges, hydrophobic interactions, hydrogen bonds, and a disulfide bond across the dimer interface. At neutral pH, salt-bridge interactions increase dimer stability and the dimer becomes less stable at acidic pH. Hydrophobic core packing of the heptad pattern is important for stability, as shown by favorable nonpolar binding free energies rather than by electrostatic components. Moreover, free-energy calculations indicate that a more uniform hydrophobic core in the coiled-coil structure of the Hv1-NIN, a channel carrying the triple mutation M234N-N235I-V236N, leads to an increase in dimer stability with respect to the wild-type. A Cys disulfide bond has a strong impact on dimer stability by holding the dimer together and facilitating the interactions described above. These results are consistent with dissociative temperatures and energy barriers of dimer dissociation obtained from the temperature-accelerated MD.


Asunto(s)
Canales Iónicos/química , Multimerización de Proteína , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Dominios Proteicos , Estabilidad Proteica
7.
J Phys Chem B ; 120(3): 406-17, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26727882

RESUMEN

Structural data of CorA Mg(2+) channels show that the five Gly-Met-Asn (GMN) motifs at the periplasmic loop of the pentamer structure form a molecular scaffold serving as a selectivity filter. Unfortunately, knowledge about the cation selectivity of Mg(2+) channels remains limited. Since Mg(2+) in aqueous solution has a strong first hydration shell and apparent second hydration sphere, the coordination structure of Mg(2+) in a CorA selectivity filter is expected to be different from that in bulk water. Hence, this study investigated the hydration structure and ligand coordination of Mg(2+) in a selectivity filter of CorA using molecular dynamics (MD) simulations. The simulations reveal that the inner-shell structure of Mg(2+) in the filter is not significantly different from that in aqueous solution. The major difference is the characteristic structural features of the outer shell. The GMN residues engage indirectly in the interactions with the metal ion as ligands in the second shell of Mg(2+). Loss of hydrogen bonds between inner- and outer-shell waters observed from Mg(2+) in bulk water is mostly compensated by interactions between waters in the first solvation shell and the GMN motif. Some water molecules in the second shell remain in the selectivity filter and become less mobile to support the metal binding. Removal of Mg(2+) from the divalent cation sensor sites of the protein had an impact on the structure and metal binding of the filter. From the results, it can be concluded that the GMN motif enhances the affinity of the metal binding site in the CorA selectivity filter by acting as an outer coordination ligand.


Asunto(s)
Magnesio/química , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
8.
Chem Biol Drug Des ; 86(6): 1360-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26058409

RESUMEN

Because of the rapid progress in biochemical and structural studies of membrane proteins, considerable attention has been given on developing efficient computational methods for solving low-to-medium resolution structures using sparse structural data. In this study, we demonstrate a novel algorithm, max-min ant system (MMAS), designed to find an assembly of α-helical transmembrane proteins using a rigid helix arrangement guided by distance constraints. The new algorithm generates a large variety with finite number of orientations of transmembrane helix bundle and finds the solution that is matched with the provided distance constraints based on the behavior of ants to search for the shortest possible path between their nest and the food source. To demonstrate the efficiency of the novel search algorithm, MMAS is applied to determine the transmembrane packing of KcsA and MscL ion channels from a limited distance information extracted from the crystal structures, and the packing of KvAP voltage sensor domain using a set of 10 experimentally determined constraints, and the results are compared with those of two popular used stochastic methods, simulated annealing Monte Carlo method and genetic algorithm.


Asunto(s)
Algoritmos , Proteínas de la Membrana/química , Modelos Moleculares , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Simulación por Computador , Canales Iónicos/química , Método de Montecarlo , Canales de Potasio/química , Canales de Potasio con Entrada de Voltaje/química , Estructura Secundaria de Proteína , Procesos Estocásticos
9.
J Phys Chem B ; 119(22): 6516-24, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25973957

RESUMEN

Voltage sensor domains (VSD) of voltage-dependent ion channels share a basic molecular structure with a voltage-sensing phosphatase and a voltage-gated proton channel. The VSD senses and responds to changes in the membrane potential by undergoing conformational changes associated with the movement of the charged arginines located on the S4 segment. Although several functional and structural studies have provided useful information about the conformational changes in many ion channels, a detailed and unambiguous explanation has not been published. Therefore, understanding the principle of voltage-dependent gating at an atomic level is required. In this study, we took advantage of the available spin labeling electron paramagnetic resonance spectrometry data and computational methods to investigate the structure and dynamic properties of the Up-state (activated) and Down-state (resting) conformations of the VSD by means of all-atom molecular dynamics (MD) simulations. The MD results of the Down conformation determined in bilayers with and without lipid phosphates both revealed a different shape of the aqueous crevice, in which more water molecules surround and fill the intracellular crevice in its Down state than in its Up state. The solvent accessible surface within the crevice has a complementary shape that can account for water-mediated interactions between the voltage sensor and the lipid bilayer. The results support the previously reported experimental data.


Asunto(s)
Simulación de Dinámica Molecular , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Agua/química , Enlace de Hidrógeno , Activación del Canal Iónico , Potenciales de la Membrana , Estructura Terciaria de Proteína , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...