Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Oral Investig ; 27(12): 7189-7198, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051347

RESUMEN

OBJECTIVES: Dental composites remain under scrutiny regarding their (long-term) safety. In spite of numerous studies on the release of monomers both in vitro and in vivo, only limited quantitative data exist on the in vivo leaching of degradation products from monomers and additives. The aim of this observational study was for the first time to quantitatively and qualitatively monitor the release of parent compounds and their degradation products in saliva from patients undergoing multiple restorations. MATERIALS AND METHODS: Five patients in need of multiple large composite restorations (minimally 5 up to 28 restorations) due to wear (attrition, abrasion, and erosion) were included in the study, and they received adhesive restorative treatment according to the standard procedures in the university clinic for Restorative Dentistry. Saliva was collected at different time points, starting before the restoration up until 24 h after the treatment with composite restorations. Saliva extracts were analyzed by liquid chromatography-mass spectrometry. RESULTS: Leaching of monomers and degradation products was highest within 30 min after the placement of the restorations. The highest median concentrations of monomers were recorded for UDMA, BisEMA-3, and TEGDMA; yet, besides BisEMA-3 and TEGDMA, no monomers could be detected after 24 h. Mono- and demethacrylated degradation products remained present up to 24 h and concentrations were generally higher than those of monomers. In patients with multiple restorations, degradation products were still present in the sample taken before the next operation, several weeks after the previous operation. CONCLUSIONS: Exposure to residual monomers and degradation products occurs in the first hours after restoration. Monomers are present in saliva shortly after restoration, but degradation products can be detected weeks after the restoration confirming a long-term release. CLINICAL SIGNIFICANCE: Future research should focus more on the release of degradation products from monomers and additives from resin-based materials given their prolonged presence in saliva after restoration.


Asunto(s)
Resinas Compuestas , Saliva , Humanos , Resinas Compuestas/química , Saliva/química , Ácidos Polimetacrílicos/química , Polietilenglicoles/química , Materiales Dentales/química , Ensayo de Materiales , Restauración Dental Permanente
2.
Front Toxicol ; 5: 1252847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143908

RESUMEN

Introduction: Many natural or synthetic compounds used in foods, dietary supplements, and food contact materials (FCMs) are suspected endocrine disruptors (EDs). Currently, scientific evidence to predict the impacts on biological systems of ED mixtures is lacking. In this study, three classes of substances were considered: i) phytoestrogens, ii) plant protection products (PPP) and iii) substances related to FCMs. Fourteen compounds were selected based on their potential endocrine activity and their presence in food and FCMs. Methods: These compounds were evaluated using an in vitro gene expression assay, the ERα-CALUX, to characterize their responses on the estrogen receptor alpha. Cells were exposed to fixed ratio mixtures and non-equipotent mixtures of full and partial agonists. The concentration-response curves measured for the three classes of compounds were characterized by variable geometric parameters in terms of maximum response (efficacy), sensitivity (slope) and potency (median effective concentration EC50). To account for these variations, a generic response addition (GRA) model was derived from mass action kinetics. Results: Although GRA does not allow us to clearly separate the concentration addition (CA) and independent action (IA) models, it was possible to determine in a statistically robust way whether the combined action of the chemicals in the mixture acted by interaction (synergy and antagonism) or by additive behavior. This distinction is crucial for assessing the risks associated with exposure to xenoestrogens. A benchmark dose approach was used to compare the response of phytoestrogen blends in the presence and absence of the hormone estradiol (E2). At the same time, 12 mixtures of 2-5 constituents including phytoestrogens, phthalates and PPPs in proportions close to those found in food products were tested. In 95% of cases, the response pattern observed showed a joint and independent effect of the chemicals on ER. Discussion: Overall, these results validate a risk assessment approach based on an additive effects model modulated by intrinsic toxicity factors. Here, the CA and IA approaches cannot be distinguished solely based on the shape of the concentration response curves. However, the optimized GRA model is more robust than CA when the efficacy, potency, and sensitivity of individual chemical agonists show large variations.

3.
J Dent ; 116: 103894, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798152

RESUMEN

OBJECTIVES: There is still much debate about the release of bisphenol A (BPA) from resin-based dental materials. Therefore, this study aimed to quantify BPA present as an impurity and to evaluate whether their degradation by salivary, bacterial, and chemical challenges could increase its release. METHODS: BPA was determined in three different amounts (300, 400, and 500 µg) of eight unpolymerized resin-based materials (four composites, one fissure sealant, two adhesives and one root canal sealer). Next, polymerized samples (n = 5) of each material were immersed in 1 mL of whole human pooled saliva collected from adults, Streptococcus mutans (2 × 107 CFU/mL), and acidic (0.1 M HCl), alkaline (0.1 M NaOH), and control media, respectively. The amount of BPA was quantified using an UPLC-MS/MS method including derivatization of BPA by pyridine-3-sulfonyl chloride. RESULTS: Only the composites contained trace amounts of BPA above the limit of quantification (ranging from 301±32 pg PBA/mg to 1534±62 pg BPA/mg), most likely as impurity from the synthesis of the monomers. The amounts of BPA released from polymerized materials upon salivary and bacterial degradation were too low for accurate quantification, but in water, quantifiable amounts of BPA were released from all materials. In alkaline media, the BPA release from two composites was significantly decreased, while the release from one adhesive was significantly increased, compared to water. CONCLUSIONS: BPA already present in unpolymerized resin-based materials may account for the release of BPA after polymerization. There was no clear indication that short-term material degradation leads to increased release of BPA.


Asunto(s)
Resinas Compuestas , Espectrometría de Masas en Tándem , Adulto , Compuestos de Bencidrilo , Cromatografía Liquida , Cementos Dentales , Materiales Dentales , Humanos , Fenoles
4.
Dent Mater ; 38(1): 19-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774330

RESUMEN

OBJECTIVES: Only little is known about degradation of methacrylate monomers. Therefore, using in vitro chemical and saliva degradation this study aimed to identify the degradation products of organic compounds present in resin-based dental materials. METHODS: Ten dental monomers and nine polymerized dental resin-based materials were immersed for 24 h in chemical media (0.1 M HCl, 0.1 M NaOH) and human pooled saliva in order to identify leached monomers and degradation products from chemical and saliva degradation. Samples were analyzed using liquid chromatography coupled to high-resolution mass spectrometry to identify previously unknown degradation products. RESULTS: During in vitro chemical degradation, uncured monomers were rapidly hydrolyzed into mono- and demethacrylated degradation products. During chemical degradation in alkaline conditions of polymerized materials, considered the worst-case scenario, only degradation products could be detected. In acidic conditions, monomers and their degradation products were detected. In addition, different additives such as EDMAB, DMPA and HMBP were present in acidic degradation samples. Degradation in human pooled saliva for 24 h to mimic the in vivo situation, resulted in the identification of both monomers and their degradation products. CLINICAL SIGNIFICANCE: Using state-of-the-art high-resolution mass spectrometry previously unknown degradation products of commonly used monomers were identified for the first time. Results show that patients may be exposed to monomers and their degradation products in the first 24 h after restorative procedures. The results provide a base for further research on the degradation of resin-based dental composites in order to assess their safety using elution and toxicity studies.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Cromatografía Liquida , Resinas Compuestas/química , Materiales Dentales/química , Humanos , Ensayo de Materiales , Metacrilatos , Saliva/química
5.
Dent Mater ; 37(12): 1834-1844, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34579959

RESUMEN

OBJECTIVE: The biocompatibility of resin based dental composites has not yet been fully characterized even though certain monomers used in these composites are synthesized from Bisphenol A (BPA), a well-known estrogenic endocrine disruptor. As a result, they show structural relationship to BPA and can contain it as an impurity. Therefore, the estrogenic activity of 9 monomers, 2 photoinitiators, one photostabilizer and leachates of 4 commercially available composites was determined. METHODS: The ERα-CALUX bioassay was used to determine both agonistic and antagonistic estrogenic activities of the pure compounds (BPA, BisDMA, BisGMA, BisEMA(3), BisEMA(6), BisEMA(10), TEGDMA, TCD-DI-HEA, BADGE, UDMA, HMBP, DMPA, CQ) and the leachates of cured composite disks. The leachates of 4 commercially available composites (Solitaire 2, Ceram.x Spectra ST, G-ænial Posterior and Filtek Supreme XTE) in water and 0.1 M NaOH (pH = 13, 'worst-case scenario') were tested for estrogenic activity (pooled leachates from 10 cured composite disks). RESULTS: Agonistic estrogenic activity was found for the monomer BisDMA, the photostabilizer HMBP and photoinitiator DMPA. All leachates from the 4 tested composites showed significant agonistic estrogenic activity higher than the DMSO control, and the highest activity (potency and efficacy) was found for Solitaire 2, followed by Ceram.x Spectra ST. Furthermore, antagonistic estrogenic activity was found in the leachates from G-ænial Posterior. SIGNIFICANCE: These results show that significant estrogenic activity was found in all leachates of the cured composite disks, and that this estrogenicity is most likely due to a mixture effect of multiple estrogenic compounds (including BPA, HMBP and DMPA). This indicates that further research into the endocrine activity of all the compounds that are present in these composites (even at low quantities) and their possible mixture effect is warranted to guarantee their safe use.


Asunto(s)
Materiales Dentales , Receptor alfa de Estrógeno , Bioensayo , Resinas Compuestas , Ensayo de Materiales , Metacrilatos
6.
Dent Mater ; 37(10): 1561-1568, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482962

RESUMEN

OBJECTIVES: BPA release from composites on the short term has been reported in several in-vitro and in-vivo studies. However, it remains unclear whether these materials also leach BPA on the long term. Even though composites may release various (BPA-based) methacrylate monomers up to one year, quantitative data about BPA have not been reported due to the lack of a sensitive method to accurately quantify low levels of BPA. In this context, the aim of the study was to quantify the one-year release of BPA with an optimized analytical method. METHODS: Composite disks (n = 6, 6 mm diameter and 2 mm height) from four commercial materials (G-ӕnial Posterior, Venus, Ceram.x mono and Filtek Supreme XTE) were immersed in 1 mL of water or ethanol as extraction solvent and stored in the dark at 37 °C. The extraction solvent was renewed weekly for a period of 52 weeks. Samples were derivatized with pyridine-3-sulfonyl chloride before analysis with ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS: Derivatizing BPA increased the sensitivity of the analytical method and allowed accurate quantification of very low levels of BPA (i.e. 0.78 pmol BPA). BPA eluted continuously in ethanol from all four tested composites over a period of one year. BPA elution was clearly higher when ethanol was used as extraction solution. In water, BPA eluted could be detected up to one year, but levels could not be accurately quantified anymore after several weeks. SIGNIFICANCE: Composites can be considered as a potential long-term source of BPA, and thus should not be neglected when assessing the overall exposure to endocrine disrupting chemicals.


Asunto(s)
Materiales Dentales , Espectrometría de Masas en Tándem , Compuestos de Bencidrilo/análisis , Cromatografía Liquida , Resinas Compuestas , Ensayo de Materiales , Fenoles
7.
Dent Mater ; 37(6): 1020-1029, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33896600

RESUMEN

OBJECTIVE: There is still much debate about the release of bisphenol-A (BPA) from dental materials. Therefore, this study aimed to quantify BPA present as an impurity in both BPA-based and non-BPA-based monomers and to evaluate whether these monomers may degrade to BPA upon salivary, bacterial, and chemical challenges. METHODS: BPA was determined in three different amounts (1, 2, and 3 µmol) of each monomer (TEGDMA, UDMA, mUDMA, BisGMA, BisEMA-3, -6, -10, -30, BisPMA, EBPADMA urethane, BADGE, and BisDMA). Next, the monomers (3 µmol) were immersed in whole human pooled saliva collected from adults, Streptococcus mutans (2 × 107 CFU/mL), and acidic (0.1 M HCl), alkaline (0.1 M NaOH), and control media. The amount of BPA was quantified using a specific and highly sensitive UPLC-MS/MS method including derivatization of BPA by pyridine-3-sulfonyl chloride. RESULTS: The monomers BisGMA and BisEMA-3 contained trace amounts (0.0006% and 0.0025%, respectively) of BPA as impurities of their synthesis process. BPA concentrations increased when the monomers BisGMA, BisEMA-3, BisEMA-6, BisEMA-10, BisPMA and BADGE were exposed to saliva and S. mutans, indicating degradation of a small amount of monomer into BPA. In addition, BisPMA and BADGE degraded into BPA under alkaline conditions. The conversion rate of the monomers into BPA ranged between 0.0003% and 0.0025%. SIGNIFICANCE: Impurities and degradation of BPA-based monomers may account for the release of BPA from resin-based dental materials. Even though the detected amounts of BPA due to monomer impurity were small, manufacturers of dental materials can reduce the BPA content by using only monomers of the highest purity. Considering the overall current trend towards BPA-free materials, it may be recommendable to investigate whether non-BPA based monomers can be used in dental resin-based materials.


Asunto(s)
Resinas Compuestas , Espectrometría de Masas en Tándem , Compuestos de Bencidrilo , Bisfenol A Glicidil Metacrilato , Cromatografía Liquida , Materiales Dentales , Humanos , Ensayo de Materiales , Metacrilatos , Fenoles , Polietilenglicoles , Ácidos Polimetacrílicos
8.
Food Chem Toxicol ; 149: 112034, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33529678

RESUMEN

Recently collected dietary exposure data on mineral oil saturated (MOSH) and aromatic (MOAH) hydrocarbons were used to evaluate the risks associated with exposure to mineral oil through food for the Belgian population. For MOSH, the no observed adverse effect level (NOAEL) value of 19 mg kg-1 bw day-1 based on the hepatic inflammation-associated granulomas found in a 90-day oral study in F-344 rats was used as point of departure (PoD). Due to existing toxicological uncertainties, the margin of exposure (MOE) approach was applied. In all investigated scenarios, the MOE values were well above 100, indicating that there is no direct health concern related to MOSH exposure for the Belgian population. Nevertheless, more appropriate risk assessment approaches for MOSH based on adequate PoD are needed. For dietary exposure to MOAH, which are potentially genotoxic and carcinogenic, no MOE values could be calculated due to the lack of adequate dose-response carcinogenicity data. In two investigated worst-case scenarios, a health concern related to MOAH exposure could not be excluded, highlighting that more data are needed to perform an adequate risk assessment. The possibility to use in vitro bioassays to collect such additional toxicological information for MOAH present in food samples was also investigated.


Asunto(s)
Dieta , Contaminación de Alimentos , Aceite Mineral/toxicidad , Adolescente , Adulto , Bélgica , Niño , Preescolar , Humanos , Persona de Mediana Edad , Aceite Mineral/administración & dosificación , Medición de Riesgo , Adulto Joven
9.
Toxicol Lett ; 332: 7-13, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32615244

RESUMEN

Root canal sealers are commonly used to endodontically treat teeth with periapical infections. Some root canal sealers based on epoxy resin contain bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The presence of these chemicals is of concern due to the close contact to the blood stream at the apex and the long setting times of up to 24 h. These chemicals, or any of their degradation products or metabolites, can then exert their toxic effects before being excreted. This study aimed to identify the phase I in vitro biotransformation products of BADGE and BFDGE using human liver microsomes. During incubation with microsomal fractions, the epoxides were rapidly hydrolysed in a NADPH independent manner resulting in the formation of BADGE.2H2O and BFDGE.2H2O. Further, oxidative reactions, such as hydroxylation and carboxylation, generated other BADGE metabolites, such as BADGE.2H2O-OH and BADGE.H2O.COOH, respectively. For BFDGE, further oxidation of BFDGE.2H2O led to the newly reported carboxylic acid, BFDGE.H2O.COOH. In total, three specific metabolites have been identified which can serve in future human biomonitoring studies of BADGE and BFDGE.


Asunto(s)
Compuestos de Bencidrilo/farmacocinética , Compuestos Epoxi/farmacocinética , Hígado/metabolismo , Materiales de Obturación del Conducto Radicular/farmacocinética , Compuestos de Bencidrilo/toxicidad , Biotransformación , Ácidos Carboxílicos/metabolismo , Compuestos Epoxi/toxicidad , Femenino , Humanos , Hidroxilación , Masculino , Microsomas Hepáticos/metabolismo , NADP/metabolismo , Oxidación-Reducción , Materiales de Obturación del Conducto Radicular/toxicidad
10.
Toxicology ; 420: 1-10, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930120

RESUMEN

Dental resin systems have been in use for several decades. (Meth)acrylic monomers are an important part of the matrix system and are either based on BPA while others lack the BPA core. The degree of conversion during restoration is in general between 50-70 % allowing leaching from unreacted monomers to the oral cavity where they can be taken up through the pulp or gastrointestinal tract after ingestion with subsequent hepatic metabolism. This study identified the in vitro Phase I and Phase II metabolism of the dental resin monomers BisGMA, UDMA, BisPMA and TCD-DI-HEA, using human liver microsomes (HLM) and human liver cytosols. During Phase I incubation with HLM, the (meth)acrylic acid in the monomers was rapidly removed followed by oxidative and hydroxylation pathways. For BisPMA an O-dealkylation pathway occurred resulting in the formation of BPA. The carbamates present in TCD-DI-HEA and UDMA were resistant to biotransformation reactions. Phase II biotransformation products were only observed for BisPMA and included conjugation reactions with sulphate and glucuronic acid. In total 4, 3, 12 and 3 biotransformation products were identified in this study for BisGMA, UDMA, BisPMA and TCD-DI-HEA respectively. Possible human health effects of these biotransformation products remain unclear due to limited data availability.


Asunto(s)
Bisfenol A Glicidil Metacrilato/metabolismo , Cromatografía Liquida , Metacrilatos/metabolismo , Microsomas Hepáticos/metabolismo , Poliuretanos/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Remoción de Radical Alquila , Femenino , Glucuronatos/metabolismo , Humanos , Hidroxilación , Masculino , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Oxidación-Reducción , Sulfatos/metabolismo
11.
J Chromatogr A ; 1576: 90-100, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30266234

RESUMEN

Since 2011, the World Health Organization has encouraged a global phase-down of the use of dental amalgam and actively supported the use of alternative, resin-based dental materials. The resins consist of (meth)acrylate monomers derived from Bisphenol A (BPA), such as Bisphenol A glycidyl methacrylate (BisGMA) and Bisphenol A ethoxylate methacrylate (BisEMA) or triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) which lack the BPA backbone. Besides monomers, other compounds such as photoinitiators and stabilizing agents can be present in the dental resin matrices. The current study consists in the development of an analytical method for the separation and identification of dental material components using LC-QTOF-MS. The developed method was applied on several dental material ingredients, unpolymerized composite resins, and a common dental sealant. The acquired high resolution accurate-mass data was analyzed using suspect screening with an in-house developed library. Next to the main components, various isomers and impurities related to the production of the main component have been detected and identified in the dental material ingredients. In total, 39 chemicals have been identified in the analyzed dental materials. On average 15 chemicals have been identified. Major components, such as BisEMA, BisGMA and TEGDMA were identified although they were not always stated in the material safety data sheets. Minor components included photoinitiators, such as ethyl 4-dimethyl aminobenzoate (EDMAB) and (meth)acrylates impurities originating from production of main ingredients.


Asunto(s)
Cromatografía Liquida , Resinas Compuestas/química , Materiales Dentales/química , Espectrometría de Masas , Ensayo de Materiales/métodos , Selladores de Fosas y Fisuras/química
12.
Sci Rep ; 8(1): 6981, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725047

RESUMEN

There is a growing necessity to acquire more profound knowledge on the quantity of eluates from resin-based dental materials, especially with regard to bisphenol A (BPA). The aim of the present study was to develop a highly sensitive method to characterize the short-term release of BPA in saliva with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), using an extraction step and additional derivatization of BPA with pyridine-3-sulfonyl chloride. Light-cured resin-based composites were incubated at 37 °C in 1 mL artificial saliva, which was refreshed daily for one week. The final protocol allows accurate quantification of very low levels of BPA in samples of artificial saliva (i.e. 1.10 pmol BPA/mL or 250 pg/mL). The daily BPA-release from dental composites, ranging from 1.10 to 7.46 pmol BPA/mL, was characterized over a period of 7 days. The highest total amount of BPA was released from Solitaire 2 (24.72 ± 2.86 pmol), followed by G-ænial Posterior (15.51 ± 0.88 pmol) and Filtek Supreme XTE (12.00 ± 1.31 pmol). In contrast, only trace amounts of BPA were released from Ceram.x Universal. This UPLC-MS/MS method might be used for clinical research focusing on the evaluation of the clinical relevance of BPA release from dental materials.


Asunto(s)
Compuestos de Bencidrilo/análisis , Cromatografía Líquida de Alta Presión/métodos , Materiales Dentales/química , Fenoles/análisis , Espectrometría de Masas en Tándem/métodos , Luz , Saliva/química , Sensibilidad y Especificidad , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...