Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 28(2): 338-349, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34759042

RESUMEN

PURPOSE: As noninvasive biomarkers are an important unmet need for neuroendocrine neoplasms (NEN), biomarker potential of genome-wide molecular profiling of plasma cell-free DNA (cfDNA) was prospectively studied in patients with NEN. EXPERIMENTAL DESIGN: Longitudinal plasma samples were collected from patients with well-differentiated, metastatic gastroenteropancreatic and lung NEN. cfDNA was subjected to shallow whole-genome sequencing to detect genome-wide copy-number alterations (CNA) and estimate circulating tumor DNA (ctDNA) fraction, and correlated to clinicopathologic and survival data. To differentiate pancreatic NENs (PNEN) from pancreatic adenocarcinomas (PAAD) using liquid biopsies, a classification model was trained using tissue-based CNAs and validated in cfDNA. RESULTS: One hundred and ninety-five cfDNA samples from 43 patients with NEN were compared with healthy control cfDNA (N = 100). Plasma samples from patients with PNEN (N = 21) were used for comparison with publicly available PNEN tissue (N = 98), PAAD tissue (N = 109), and PAAD cfDNA (N = 96). Thirty percent of the NEN cfDNA samples contained ctDNA and 44% of the patients had at least one ctDNA-positive (ctDNA+) sample. CNAs detected in cfDNA were highly specific for NENs and the classification model could distinguish PAAD and PNEN cfDNA samples with a sensitivity, specificity, and AUC of 62%, 86%, and 79%, respectively. ctDNA-positivity was associated with higher World Health Organization (WHO) grade, primary tumor location, and higher chromogranin A and neuron-specific enolase values. Overall survival was significantly worse for ctDNA+ patients and increased ctDNA fractions were associated with poorer progression-free survival. CONCLUSIONS: Sequential genome-wide profiling of plasma cfDNA is a novel, noninvasive biomarker with high specificity for diagnosis, prognosis, and follow-up in metastatic NENs.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Estudios de Seguimiento , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico
2.
Cancers (Basel) ; 12(6)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512761

RESUMEN

DNA methylation is a crucial epigenetic mechanism for gene expression regulation and cell differentiation. Furthermore, it was found to play a major role in multiple pathological processes, including cancer. In pancreatic neuroendocrine neoplasms (PNENs), epigenetic deregulation is also considered to be of significance, as the most frequently mutated genes have an important function in epigenetic regulation. However, the exact changes in DNA methylation between PNENs and the endocrine cells of the pancreas, their likely cell-of-origin, remain largely unknown. Recently, two subtypes of PNENs have been described which were linked to cell-of-origin and have a different prognosis. A difference in the expression of the transcription factor PDX1 was one of the key molecular differences. In this study, we performed an exploratory genome-wide DNA methylation analysis using Infinium Methylation EPIC arrays (Illumina) on 26 PNENs and pancreatic islets of five healthy donors. In addition, the methylation profile of the PDX1 region was used to perform subtyping in a global cohort of 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples. In our exploratory analysis, we identified 26,759 differentially methylated CpGs and 79 differentially methylated regions. The gene set enrichment analysis highlighted several interesting pathways targeted by altered DNA methylation, including MAPK, platelet-related and immune system-related pathways. Using the PDX1 methylation in 83 PNEN, 2 healthy alpha cell and 3 healthy beta cell samples, two subtypes were identified, subtypes A and B, which were similar to alpha and beta cells, respectively. These subtypes had different clinicopathological characteristics, a different pattern of chromosomal alterations and a different prognosis, with subtype A having a significantly worse prognosis compared with subtype B (HR 0.22 [95% CI: 0.051-0.95], p = 0.043). Hence, this study demonstrates that several cancer-related pathways are differently methylated between PNENs and normal islet cells. In addition, we validated the use of the PDX1 methylation status for the subtyping of PNENs and its prognostic importance.

3.
Rev Endocr Metab Disord ; 20(3): 333-351, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31368038

RESUMEN

High-throughput analysis, including next-generation sequencing and microarrays, have strongly improved our understanding of cancer biology. However, genomic data on rare cancer types, such as neuroendocrine neoplasms, has been lagging behind. Neuroendocrine neoplasms (NENs) develop from endocrine cells spread throughout the body and are highly heterogeneous in biological behavior. In this challenging disease, there is an urgent need for new therapies and new diagnostic, prognostic, follow-up and predictive biomarkers to aid patient management. The last decade, molecular data on neuroendocrine neoplasms of the gastrointestinal tract and pancreas, termed gastroenteropancreatic NENs (GEP-NENs), has strongly expanded. The aim of this review is to give an overview of the recent advances on (epi)genetic level and highlight their clinical applications to address the current needs in GEP-NENs. We illustrate how molecular alterations can be and are being used as therapeutic targets, how mutations in DAXX/ATRX and copy number variations could be used as prognostic biomarkers, how far we are in identifying predictive biomarkers and how genetics can contribute to GEP-NEN classification. Finally, we discuss recent studies on liquid biopsies in the field of GEP-NENs and illustrate how liquid biopsies can play a role in patient management. In conclusion, molecular studies have suggested multiple potential biomarkers, but further validation is ongoing.


Asunto(s)
Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Biopsia Líquida/métodos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Animales , Humanos
4.
Front Oncol ; 8: 467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30443491

RESUMEN

Background: Detection of tumor-specific alterations in cell-free DNA (cfDNA) has proven valuable as a liquid biopsy for several types of cancer. So far, use of cfDNA remains unexplored for pancreatic neuroendocrine tumor (PNET) patients. Methods: From 10 PNET patients, fresh frozen tumor tissue, buffy coat and plasma samples were collected. Whole-exome sequencing of primary tumor and germline DNA was performed to identify tumor-specific variants and copy number variations (CNVs). Subsequently, tumor-specific variants were quantified in plasma cfDNA with droplet digital PCR. In addition, CNV analysis of cfDNA was performed using shallow whole-genome sequencing. Results: Tumor-specific variants were detected in perioperative plasma samples of two PNET patients, at variant allele fractions (VAFs) of respectively 19 and 21%. Both patients had metastatic disease at time of surgery, while the other patients presented with localized disease. In the metastatic patients, CNV profiles of tumor tissue and cfDNA were significantly correlated. A follow-up plasma sample of a metastatic patient demonstrated an increased VAF (57%) and an increased chromosomal instability, in parallel with an increase in tumor burden. Conclusions: We are the first to report the presence of tumor-specific genetic alterations in cfDNA of metastatic PNET patients and their evolution during disease progression. Additionally, CNV analysis in cfDNA shows potential as a liquid biopsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...