Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38598825

RESUMEN

Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins. This application for biomimetic membranes is unexpected as channel proteins and biomimetic membranes were assumed to be unstable under dry conditions. DBMs mimic human skin's structure to offer both high vapor transport and small molecule exclusion under dry conditions. DBMs feature highly organized pores resembling sweat pores in human skin, but at super high densities (>1012 pores/cm2). These DBMs achieved exceptional water vapor transport rates, surpassing commercial breathable fabrics by up to 6.2 times, despite containing >2 orders of magnitude smaller pores (1 nm vs >700 nm). These DBMs effectively excluded model biological agents and harmful chemicals both in liquid and vapor phases, again in contrast with the commercial breathable fabrics. Remarkably, while hydrated biomimetic membranes were highly permeable to liquid water, they exhibited higher water resistances after dehydration at values >38 times that of commercial breathable fabrics. Molecular dynamics simulations support our hypothesis that dehydration induced protein hydrophobicity increases which enhanced DBM performance. DBMs hold promise for various applications, including membrane distillation, dehumidification, and protective barriers for atmospheric water harvesting materials.

2.
Metab Eng ; 78: 171-182, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37301359

RESUMEN

Retro-biosynthetic approaches have made significant advances in predicting synthesis routes of target biofuel, bio-renewable or bio-active molecules. The use of only cataloged enzymatic activities limits the discovery of new production routes. Recent retro-biosynthetic algorithms increasingly use novel conversions that require altering the substrate or cofactor specificities of existing enzymes while connecting pathways leading to a target metabolite. However, identifying and re-engineering enzymes for desired novel conversions are currently the bottlenecks in implementing such designed pathways. Herein, we present EnzRank, a convolutional neural network (CNN) based approach, to rank-order existing enzymes in terms of their suitability to undergo successful protein engineering through directed evolution or de novo design towards a desired specific substrate activity. We train the CNN model on 11,800 known active enzyme-substrate pairs from the BRENDA database as positive samples and data generated by scrambling these pairs as negative samples using substrate dissimilarity between an enzyme's native substrate and all other molecules present in the dataset using Tanimoto similarity score. EnzRank achieves an average recovery rate of 80.72% and 73.08% for positive and negative pairs on test data after using a 10-fold holdout method for training and cross-validation. We further developed a web-based user interface (available at https://huggingface.co/spaces/vuu10/EnzRank) to predict enzyme-substrate activity using SMILES strings of substrates and enzyme sequence as input to allow convenient and easy-to-use access to EnzRank. In summary, this effort can aid de novo pathway design tools to prioritize starting enzyme re-engineering candidates for novel reactions as well as in predicting the potential secondary activity of enzymes in cell metabolism.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Ingeniería de Proteínas , Enzimas/genética , Enzimas/metabolismo
3.
Viruses ; 15(5)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37243189

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Proteins ; 91(2): 196-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36111441

RESUMEN

The continued emergence of new SARS-CoV-2 variants has accentuated the growing need for fast and reliable methods for the design of potentially neutralizing antibodies (Abs) to counter immune evasion by the virus. Here, we report on the de novo computational design of high-affinity Ab variable regions (Fv) through the recombination of VDJ genes targeting the most solvent-exposed hACE2-binding residues of the SARS-CoV-2 spike receptor binding domain (RBD) protein using the software tool OptMAVEn-2.0. Subsequently, we carried out computational affinity maturation of the designed variable regions through amino acid substitutions for improved binding with the target epitope. Immunogenicity of designs was restricted by preferring designs that match sequences from a 9-mer library of "human Abs" based on a human string content score. We generated 106 different antibody designs and reported in detail on the top five that trade-off the greatest computational binding affinity for the RBD with human string content scores. We further describe computational evaluation of the top five designs produced by OptMAVEn-2.0 using a Rosetta-based approach. We used Rosetta SnugDock for local docking of the designs to evaluate their potential to bind the spike RBD and performed "forward folding" with DeepAb to assess their potential to fold into the designed structures. Ultimately, our results identified one designed Ab variable region, P1.D1, as a particularly promising candidate for experimental testing. This effort puts forth a computational workflow for the de novo design and evaluation of Abs that can quickly be adapted to target spike epitopes of emerging SARS-CoV-2 variants or other antigenic targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes , Epítopos/química , Región Variable de Inmunoglobulina , Glicoproteína de la Espiga del Coronavirus/metabolismo , Anticuerpos Antivirales/metabolismo
5.
Viruses ; 14(7)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35891340

RESUMEN

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , COVID-19/diagnóstico , COVID-19/veterinaria , Bovinos , Pollos , Ensayo de Inmunoadsorción Enzimática , Humanos , Pandemias/prevención & control , Glicoproteína de la Espiga del Coronavirus , Porcinos
6.
bioRxiv ; 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35350198

RESUMEN

The cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) involves the association of its receptor binding domain (RBD) with human angiotensin converting enzyme 2 (hACE2) as the first crucial step. Efficient and reliable prediction of RBD-hACE2 binding affinity changes upon amino acid substitutions can be valuable for public health surveillance and monitoring potential spillover and adaptation into non-human species. Here, we introduce a convolutional neural network (CNN) model trained on protein sequence and structural features to predict experimental RBD-hACE2 binding affinities of 8,440 variants upon single and multiple amino acid substitutions in the RBD or ACE2. The model achieves a classification accuracy of 83.28% and a Pearson correlation coefficient of 0.85 between predicted and experimentally calculated binding affinities in five-fold cross-validation tests and predicts improved binding affinity for most circulating variants. We pro-actively used the CNN model to exhaustively screen for novel RBD variants with combinations of up to four single amino acid substitutions and suggested candidates with the highest improvements in RBD-ACE2 binding affinity for human and animal ACE2 receptors. We found that the binding affinity of RBD variants against animal ACE2s follows similar trends as those against human ACE2. White-tailed deer ACE2 binds to RBD almost as tightly as human ACE2 while cattle, pig, and chicken ACE2s bind weakly. The model allows testing whether adaptation of the virus for increased binding with other animals would cause concomitant increases in binding with hACE2 or decreased fitness due to adaptation to other hosts.

7.
Metab Eng ; 69: 286-301, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982997

RESUMEN

Clostridium thermocellum is a promising candidate for consolidated bioprocessing because it can directly ferment cellulose to ethanol. Despite significant efforts, achieved yields and titers fall below industrially relevant targets. This implies that there still exist unknown enzymatic, regulatory, and/or possibly thermodynamic bottlenecks that can throttle back metabolic flow. By (i) elucidating internal metabolic fluxes in wild-type C. thermocellum grown on cellobiose via 13C-metabolic flux analysis (13C-MFA), (ii) parameterizing a core kinetic model, and (iii) subsequently deploying an ensemble-docking workflow for discovering substrate-level regulations, this paper aims to reveal some of these factors and expand our knowledgebase governing C. thermocellum metabolism. Generated 13C labeling data were used with 13C-MFA to generate a wild-type flux distribution for the metabolic network. Notably, flux elucidation through MFA alluded to serine generation via the mercaptopyruvate pathway. Using the elucidated flux distributions in conjunction with batch fermentation process yield data for various mutant strains, we constructed a kinetic model of C. thermocellum core metabolism (i.e. k-ctherm138). Subsequently, we used the parameterized kinetic model to explore the effect of removing substrate-level regulations on ethanol yield and titer. Upon exploring all possible simultaneous (up to four) regulation removals we identified combinations that lead to many-fold model predicted improvement in ethanol titer. In addition, by coupling a systematic method for identifying putative competitive inhibitory mechanisms using K-FIT kinetic parameterization with the ensemble-docking workflow, we flagged 67 putative substrate-level inhibition mechanisms across central carbon metabolism supported by both kinetic formalism and docking analysis.


Asunto(s)
Clostridium thermocellum , Celobiosa/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Fermentación , Cinética
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34588290

RESUMEN

The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 has continued to evolve with the emergence of several novel variants, and amino acid changes in the RBD have been implicated with increased fitness and potential for immune evasion. Reliably predicting the effect of amino acid changes on the ability of the RBD to interact more strongly with the hACE2 can help assess the implications for public health and the potential for spillover and adaptation into other animals. Here, we introduce a two-step framework that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, lipophilic, generalized Born solvation, hydrogen bonding, π-π packing, and self-contact correction terms. The second step implements a neural network to classify and quantitatively predict binding affinity changes using the decomposed energy terms as descriptors. The computational base achieves a validation accuracy of 82.8% for classifying single-amino acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and a correlation coefficient of 0.73 between predicted and experimentally calculated changes in binding affinities. Both metrics are calculated using a fivefold cross-validation test. Our method thus sets up a framework for screening binding affinity changes caused by unknown single- and multiple-amino acid changes offering a valuable tool to predict host adaptation of SARS-CoV-2 variants toward tighter hACE2 binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Interacciones Huésped-Patógeno/genética , Redes Neurales de la Computación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sustitución de Aminoácidos , Sitios de Unión/genética , Humanos , Simulación de Dinámica Molecular , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Comput Struct Biotechnol J ; 18: 2573-2582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983400

RESUMEN

SARS-CoV-2 is a novel highly virulent pathogen which gains entry to human cells by binding with the cell surface receptor - angiotensin converting enzyme (ACE2). We computationally contrasted the binding interactions between human ACE2 and coronavirus spike protein receptor binding domain (RBD) of the 2002 epidemic-causing SARS-CoV-1, SARS-CoV-2, and bat coronavirus RaTG13 using the Rosetta energy function. We find that the RBD of the spike protein of SARS-CoV-2 is highly optimized to achieve very strong binding with human ACE2 (hACE2) which is consistent with its enhanced infectivity. SARS-CoV-2 forms the most stable complex with hACE2 compared to SARS-CoV-1 (23% less stable) or RaTG13 (11% less stable). Notably, we calculate that the SARS-CoV-2 RBD lowers the binding strength of angiotensin 2 receptor type I (ATR1) which is the native binding partner of ACE2 by 44.2%. Strong binding is mediated through strong electrostatic attachments with every fourth residue on the N-terminus alpha-helix (starting from Ser19 to Asn53) as the turn of the helix makes these residues solvent accessible. By contrasting the spike protein SARS-CoV-2 Rosetta binding energy with ACE2 of different livestock and pet species we find strongest binding with bat ACE2 followed by human, feline, equine, canine and finally chicken. This is consistent with the hypothesis that bats are the viral origin and reservoir species. These results offer a computational explanation for the increased infection susceptibility by SARS-CoV-2 and allude to therapeutic modalities by identifying and rank-ordering the ACE2 residues involved in binding with the virus.

10.
Structure ; 28(12): 1344-1357.e4, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32857964

RESUMEN

Insertions and deletions (indels) in protein sequences alter the residue spacing along the polypeptide backbone and consequently open up possibilities for tuning protein function in a way that is inaccessible by amino acid substitution alone. We describe an optimization-based computational protein redesign approach centered around predicting beneficial combinations of indels along with substitutions and also obtain putative substrate-docked structures for these protein variants. This modified algorithmic capability would be of interest for enzyme engineering and broadly inform other protein design tasks. We highlight this capability by (1) identifying active variants of a bacterial thioesterase enzyme ('TesA) with experimental corroboration, (2) recapitulating existing active TEM-1 ß-Lactamase sequences of different sizes, and (3) identifying shorter 4-Coumarate:CoA ligases with enhanced in vitro activities toward non-native substrates. A separate PyRosetta-based open-source tool, Indel-Maker (http://www.maranasgroup.com/software.htm), has also been created to construct computational models of user-defined protein variants with specific indels and substitutions.


Asunto(s)
Mutación INDEL , Ingeniería de Proteínas/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Dominio Catalítico , Coenzima A Ligasas/química , Coenzima A Ligasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lisofosfolipasa/química , Lisofosfolipasa/metabolismo , Simulación del Acoplamiento Molecular/métodos , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Unión Proteica , beta-Lactamasas/química , beta-Lactamasas/metabolismo
11.
J Mol Biol ; 431(7): 1353-1369, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30802457

RESUMEN

Long stretches of intrinsically disordered regions (IDRs) are abundantly present in eukaryotic transcription factors. Although their biological significance is well appreciated, the underlying structural and dynamic mechanisms of their function are still not clear. Using solution NMR spectroscopy, we have studied the structural and dynamic features of two paralogous HOX transcription factors, SCR and DFD, from Drosophila. Both proteins have a conserved DNA-binding homeodomain and a long stretch of functionally important IDR. Using NMR dynamics, we determined flexibility of each residue in these proteins. The flexibility of the residues in the disordered region is not uniform. In both proteins, the IDRs have short stretches of consecutive residues with relatively less flexibility, that is, higher rigidity. We show that one such rigid segment is specifically recognized by another co-transcription factor, thus highlighting the importance of these rigid segments in IDR-mediated protein-protein interactions. Using molecular dynamics simulation, we further show that the rigid segments sample less conformations compared to the rest of the residues in the disordered region. The restrained conformational sampling of these rigid residues should lower the loss in conformational entropy during their interactions with binding partners resulting in sequence specific binding. This work provides experimental evidence of a "rigid-segment" model of IDRs, where functionally important rigid segments are connected by highly flexible linkers. Furthermore, a comparative study of IDRs in paralogous proteins reveals that in spite of low-sequence conservation, the rigid and flexible segments are sequentially maintained to preserve related functions and regulations of these proteins.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Homeodominio/química , Factores de Transcripción/química , Factores de Transcripción/fisiología , Animales , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Entropía , Proteínas de Homeodominio/genética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Conformación Proteica en Hélice alfa , Análisis de Secuencia de Proteína , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...