Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 323: 116203, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108511

RESUMEN

The invasion of dreissenid mussels has profoundly altered benthic physical environments and whole-lake nutrient cycling in the Great Lakes over the past several decades. The resurgence of the filamentous green alga Cladophora appears to be one of the consequences of this invasion. Sloughed Cladophora deteriorates water quality, fouls recreational beaches, and may contribute to outbreaks of avian botulism, which have been especially severe in the Sleeping Bear Dunes National Lakeshore (SLBE) region of Lake Michigan. To help determine the fate of sloughed Cladophora, a Lagrangian particle trajectory model was developed to track the transport of Cladophora fragments in the nearshore zone based upon a physical transport-mixing model. The model results demonstrate that the primary deposition sites of sloughed Cladophora within the SLBE region are mid-depth sites not far away from their initial growth area. Because of high algae production in the nearshore waters and limited exchange between the inner and outer bay, the shoreline beach of Platte Bay appears to be particularly vulnerable to fouling, with overall three times as many accumulated particles as those along the Sleeping Bear Bay and Good Harbor Bay. The results of this model may be used to guide regional environmental management initiatives and provide insights into the mechanisms responsible for avian botulism outbreaks. This model may also inform the development of whole-lake ecosystem models that account for nearshore-offshore interactions.


Asunto(s)
Botulismo , Chlorophyta , Animales , Aves , Ecosistema , Lagos , Michigan
2.
PLoS One ; 13(10): e0204767, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30289888

RESUMEN

In aquatic systems, food web linkages are often assessed using diet contents, stable isotope ratios, and, increasingly, fatty acid composition of organisms. Some correlations between different trophic metrics are assumed to be well-supported; for example, particular stable isotope ratios and fatty acids seem to reflect reliance on benthic or pelagic energy pathways. However, understanding whether the assumed correlations between different trophic metrics are coherent and consistent across species represents a key step toward their effective use in food web studies. To assess links among trophic markers, we compared relationships between major diet components, fatty acids, and stable isotope ratios in three fishes: yellow perch (Perca flavescens), round goby (Neogobius melanostomus), and spottail shiner (Notropis hudsonius) collected from nearshore Lake Michigan. Yellow perch and spottail shiner are native in this system, while round goby are a relatively recent invader. We found some evidence for agreement between different trophic metrics, especially between diet components, n-3:n-6 fatty acid ratios, and stable isotope ratios (δ13C and δ15N). However, we also observed significant variation in observed relationships among markers and species, potentially due to taxonomic variation in the specific diet items consumed (e.g., chydorid microcrustaceans and Dreissena mussels) and species-specific biochemical processes. In many of these latter cases, the invasive species differed from the native species. Understanding the effects of taxonomic variation on prey and predator signatures could significantly improve the usefulness of fatty acids in food web studies, whereas diet contents and stable isotopes appear to be reliable indicators of trophic niche in aquatic food webs.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Animales , Bivalvos/fisiología , Isótopos de Carbono/química , Dieta , Dreissena/fisiología , Ecosistema , Especies Introducidas , Lagos/química , Michigan , Isótopos de Nitrógeno/química , Estado Nutricional/fisiología
3.
Environ Sci Technol ; 49(13): 7606-13, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26007285

RESUMEN

Recent spread of invasive mussels in Lake Michigan has altered primary productivity in the nearshore zone, resulting in proliferation of filamentous benthic green algae (Cladophora glomerata). In areas of dense Cladophora and quagga mussel (Dreissena bugensis) assemblages, as well as in regions where sloughed Cladophora accumulates, methylmercury (MeHg) production is enhanced. A shoreline transect from a river mouth through waters overlying Cladophora/quagga-rich zones showed that aqueous MeHg concentrations increased, despite river dilution. Cladophora, as primary producers, ranged from 0.6 to 7.5 ng g(-1) MeHg [4-47% of total mercury (Hg) as MeHg], and were higher than MeHg concentrations in offshore-collected seston. Concentrations of MeHg in decaying Cladophora accumulated onshore ranged from 2.6 to 18.0 ng g(-1) MeHg (18-41% as MeHg) and from 0.1 to 3.0 ng g(-1) MeHg (2-21% as MeHg) in deposits of recently sloughed and accumulated Cladophora in a nearshore topographical depression. Relative to offshore open waters, interstitial waters within decaying Cladophora from onshore and nearshore deposits were elevated in MeHg concentration, 1000- and 10-fold, respectively. Percent Hg as MeHg was also elevated (65-75% and 9-19%, respectively for onshore interstitial water and nearshore interstitial water, compared to 0.2-3.3% as MeHg for open water). Quagga mussels collected within growing Cladophora beds in the nearshore zone were significantly higher in MeHg than offshore counterparts. Our combined results suggest that recent changes in nearshore primary production contributes to MeHg production and bioaccumulation in Lake Michigan.


Asunto(s)
Chlorophyta/fisiología , Dreissena/fisiología , Compuestos de Metilmercurio/metabolismo , Ríos , Animales , Ecosistema , Especies Introducidas , Lagos , Mercurio/análisis , Mercurio/metabolismo , Michigan
4.
Ecology ; 95(5): 1243-52, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25000756

RESUMEN

Aquatic food webs that incorporate multiple energy channels (e.g., nearshore benthic and pelagic) with varying productivity and turnover rates convey stability to biological communities by providing independent energy sources. Within the Lake Michigan food web, invasive dreissenid mussels have caused rapid changes to food web structure and potentially altered the channels through which consumers acquire energy. We used stable C and N isotopes to determine how Lake Michigan food web structure has changed in the past decade, coincident with the expansion of dreissenid mussels, decreased pelagic phytoplankton production, and increased nearshore benthic algal production. Fish and invertebrate samples collected from sites around Lake Michigan were analyzed to determine taxa-specific 13C:12C (delta13C) and 15N:14N (delta15N) ratios. Sampling took place during two distinct periods, 2002-2003 and 2010-2012, that spanned the period of dreissenid expansion, and included nearshore, pelagic and profundal fish and invertebrate taxa. The magnitude and direction of the delta13C shift indicated significantly greater reliance upon nearshore benthic energy sources among nearly all fish taxa as well as profundal invertebrates following dreissenid expansion. Although the mechanisms underlying this delta13C shift likely varied among species, possible causes include the transport of benthic algal production to offshore waters and increased feeding on nearshore prey items by pelagic and profundal species. delta15N shifts were more variable and of smaller magnitude across taxa, although declines in delta15N among some pelagic fishes suggest a shift to alternative prey resources. Lake Michigan fishes and invertebrates appear to have responded to dreissenid-induced changes in nutrient and energy pathways by switching from pelagic to alternative nearshore energy subsidies. Although large shifts in energy allocation (i.e., pelagic to nearshore benthic) resulting from invasive species appear to affect total production at upper trophic levels, changes in trophic structure and utilization of novel energy pathways may help to stabilize food webs following species invasions.


Asunto(s)
Peces/fisiología , Cadena Alimentaria , Invertebrados/fisiología , Lagos/química , Animales , Anseriformes/fisiología , Monitoreo del Ambiente , Población , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...