Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Virol ; 9(1): 79-98, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-35655338

RESUMEN

For decades, viruses have been isolated primarily from humans and other organisms. Interestingly, one of the most complex sides of the virosphere was discovered using free-living amoebae as hosts. The discovery of giant viruses in the early twenty-first century opened a new chapter in the field of virology. Giant viruses are included in the phylum Nucleocytoviricota and harbor large and complex DNA genomes (up to 2.7 Mb) encoding genes never before seen in the virosphere and presenting gigantic particles (up to 1.5 µm). Different amoebae have been used to isolate and characterize a plethora of new viruses with exciting details about novel viral biology. Through distinct isolation techniques and metagenomics, the diversity and complexity of giant viruses have astonished the scientific community. Here, we discuss the latest findings on amoeba viruses and how using these single-celled organisms as hosts has revealed entities that have remained hidden in plain sight for ages.


Asunto(s)
Amoeba , Virus Gigantes , Virus , Virus ADN/genética , Genoma Viral , Virus Gigantes/genética , Humanos , Metagenómica , Filogenia , Virus/genética
2.
Viruses ; 14(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35215784

RESUMEN

Almost two decades after the isolation of the first amoebal giant viruses, indubitably the discovery of these entities has deeply affected the current scientific knowledge on the virosphere. Much has been uncovered since then: viruses can now acknowledge complex genomes and huge particle sizes, integrating remarkable evolutionary relationships that date as early as the emergence of life on the planet. This year, a decade has passed since the first studies on giant viruses in the Brazilian territory, and since then biomes of rare beauty and biodiversity (Amazon, Atlantic forest, Pantanal wetlands, Cerrado savannas) have been explored in the search for giant viruses. From those unique biomes, novel viral entities were found, revealing never before seen genomes and virion structures. To celebrate this, here we bring together the context, inspirations, and the major contributions of independent Brazilian research groups to summarize the accumulated knowledge about the diversity and the exceptionality of some of the giant viruses found in Brazil.


Asunto(s)
Amoeba/virología , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación , Virología/historia , Biodiversidad , Brasil , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Virus Gigantes/ultraestructura , Historia del Siglo XXI , Filogenia
3.
Arch Virol ; 167(2): 711-715, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35000005

RESUMEN

Here, we propose the creation of the family "Yaraviridae", a new taxon to classify a virus infecting Acanthamoeba castellanii cells. Recently, we described the discovery of a new virus infecting free-living amoebae, yaravirus, which has features that strongly differ from those of all other viruses of amoebae described to date. Yaravirus particles are about 80 nm in diameter and have a dsDNA genome of ~45 kbp containing 74 ORFs, most of which (>90%) have no homologs in current databases. Together, these data support the creation of a new species ("Yaravirus brasiliense"), a new viral genus (here proposed as "Yaravirus"), and a new viral family (here proposed as "Yaraviridae") to classify yaravirus and other related viruses that may be described in the future. All of them are to be included into the existing realm Varidnaviria and the kingdom Bamfordvirae, due to the presence of a major capsid protein containing a double jelly-roll fold.


Asunto(s)
Acanthamoeba castellanii , Proteínas de la Cápside , Virus ADN/genética , Genoma Viral
4.
Sci Total Environ ; 766: 142645, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33069469

RESUMEN

The world is experiencing the worst global health crisis in recent decades since December/2019 due to a new pandemic coronavirus. The COVID-19 disease, caused by SARS-CoV-2, has resulted in more than 30 million cases and 950 thousand deaths worldwide as of September 21, 2020. Determining the extent of the virus on public surfaces is critical for understanding the potential risk of infection in these areas. In this study, we investigated the presence of SARS-CoV-2 RNA on public surfaces in a densely populated urban area in Brazil. Forty-nine of 933 samples tested positive (5.25%) for SARS-CoV-2 RNA, including samples collected from distinct material surfaces, including metal and concrete, and distinct places, mainly around hospital care units and public squares. Our data indicated the contamination of public surfaces by SARS-CoV-2, suggesting the circulation of infected patients and the risk of infection for the population. Constant monitoring of the virus in urban areas is required as a strategy to fight the pandemic and prevent further infections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , Humanos , Pandemias , ARN Viral
5.
Proc Natl Acad Sci U S A ; 117(28): 16579-16586, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601223

RESUMEN

Here we report the discovery of Yaravirus, a lineage of amoebal virus with a puzzling origin and evolution. Yaravirus presents 80-nm-sized particles and a 44,924-bp dsDNA genome encoding for 74 predicted proteins. Yaravirus genome annotation showed that none of its genes matched with sequences of known organisms at the nucleotide level; at the amino acid level, six predicted proteins had distant matches in the nr database. Complimentary prediction of three-dimensional structures indicated possible function of 17 proteins in total. Furthermore, we were not able to retrieve viral genomes closely related to Yaravirus in 8,535 publicly available metagenomes spanning diverse habitats around the globe. The Yaravirus genome also contained six types of tRNAs that did not match commonly used codons. Proteomics revealed that Yaravirus particles contain 26 viral proteins, one of which potentially representing a divergent major capsid protein (MCP) with a predicted double jelly-roll domain. Structure-guided phylogeny of MCP suggests that Yaravirus groups together with the MCPs of Pleurochrysis endemic viruses. Yaravirus expands our knowledge of the diversity of DNA viruses. The phylogenetic distance between Yaravirus and all other viruses highlights our still preliminary assessment of the genomic diversity of eukaryotic viruses, reinforcing the need for the isolation of new viruses of protists.


Asunto(s)
Acanthamoeba castellanii/virología , Virus ADN/aislamiento & purificación , Virus ADN/química , Virus ADN/clasificación , Virus ADN/genética , Genoma Viral , Filogenia , Proteínas Virales/genética
6.
J Vis Exp ; (152)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31710032

RESUMEN

During the amoeba co-culture process, more than one virus may be isolated in a single well. We previously solved this issue by end point dilution and/or fluorescence activated cell sorting (FACS) applied to the viral population. However, when the viruses in the mixture have similar morphologic properties and one of the viruses multiplies slowly, the presence of two viruses is discovered at the stage of genome assembly and the viruses cannot be separated for further characterization. To solve this problem, we developed a single cell micro-aspiration procedure that allows for separation and cloning of highly similar viruses. In the present work, we present how this alternative strategy allowed us to separate the small viral subpopulations of Clandestinovirus ST1 and Usurpativirus LCD7, giant viruses that grow slowly and do not lead to amoebal lysis compared to the lytic and fast-growing Faustovirus. Purity control was assessed by specific gene amplification and viruses were produced for further characterization.


Asunto(s)
Amoeba/virología , Citometría de Flujo/métodos , Virus Gigantes/aislamiento & purificación , Análisis de la Célula Individual/métodos , Succión
7.
Curr Opin Virol ; 36: 25-31, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30889472

RESUMEN

In the last few decades, the isolation of amoebae-infecting giant viruses has challenged established principles related to the definition of virus, their evolution, and their particle structures represented by a variety of shapes and sizes. Tupanviruses are one of the most recently described amoebae-infecting viruses and exhibit a peculiar morphology with a cylindrical tail attached to the capsid. Proteomic analysis of purified viral particles revealed that virions are composed of over one hundred proteins with different functions. The putative origin of these proteins had not yet been investigated. Here, we provide evidences for multiple origins of the proteins present in tupanvirus particles, wherein 20% originate from members of the archaea, bacteria and eukarya.


Asunto(s)
Virus Gigantes/química , Virus Gigantes/genética , Proteoma , Proteínas Virales/genética , Virión/química , Amoeba/virología , Archaea/genética , Bacterias/genética , Eucariontes/genética , Proteómica , Proteínas Virales/química , Virión/genética
8.
J Virol ; 93(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30541841

RESUMEN

Giant viruses are complex members of the virosphere, exhibiting outstanding structural and genomic features. Among these viruses, the pandoraviruses are some of the most intriguing members, exhibiting giant particles and genomes presenting at up to 2.5 Mb, with many genes having no known function. In this work, we analyzed, by virological and microscopic methods, the replication cycle steps of three new pandoravirus isolates from samples collected in different regions of Brazil. Our data indicate that all analyzed pandoravirus isolates can deeply modify the Acanthamoeba cytoplasmic environment, recruiting mitochondria and membranes into and around the electron-lucent viral factories. We also observed that the viral factories start forming before the complete degradation of the cellular nucleus. Various patterns of pandoravirus particle morphogenesis were observed, and the assembly of the particles seemed to be started either by the apex or by the opposite side. On the basis of the counting of viral particles during the infection time course, we observed that pandoravirus particles could undergo exocytosis after their morphogenesis in a process that involved intense recruitment of membranes that wrapped the just-formed particles. The treatment of infected cells with brefeldin affected particle exocytosis in two of the three analyzed strains, indicating biological variability among isolates. Despite such particle exocytosis, the lysis of host cells also contributed to viral release. This work reinforces knowledge of and reveals important steps in the replication cycle of pandoraviruses.IMPORTANCE The emerging Pandoraviridae family is composed of some of the most complex viruses known to date. Only a few pandoravirus isolates have been described until now, and many aspects of their life cycle remain to be elucidated. A comprehensive description of the replication cycle is pivotal to a better understanding of the biology of the virus. For this report, we describe new pandoraviruses and used different methods to better characterize the steps of the replication cycle of this new group of viruses. Our results provide new information about the diversity and biology of these giant viruses.


Asunto(s)
Acanthamoeba castellanii/virología , Virus ADN/genética , Liberación del Virus/fisiología , Replicación Viral/fisiología , Brasil , Virus ADN/aislamiento & purificación , Genoma Viral/genética , Virus Gigantes/genética , Virus Gigantes/aislamiento & purificación
9.
Nat Commun ; 9(1): 749, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29487281

RESUMEN

Here we report the discovery of two Tupanvirus strains, the longest tailed Mimiviridae members isolated in amoebae. Their genomes are 1.44-1.51 Mb linear double-strand DNA coding for 1276-1425 predicted proteins. Tupanviruses share the same ancestors with mimivirus lineages and these giant viruses present the largest translational apparatus within the known virosphere, with up to 70 tRNA, 20 aaRS, 11 factors for all translation steps, and factors related to tRNA/mRNA maturation and ribosome protein modification. Moreover, two sequences with significant similarity to intronic regions of 18 S rRNA genes are encoded by the tupanviruses and highly expressed. In this translation-associated gene set, only the ribosome is lacking. At high multiplicity of infections, tupanvirus is also cytotoxic and causes a severe shutdown of ribosomal RNA and a progressive degradation of the nucleus in host and non-host cells. The analysis of tupanviruses constitutes a new step toward understanding the evolution of giant viruses.


Asunto(s)
Mimiviridae/genética , Amoeba/virología , Brasil , Evolución Molecular , Genoma Viral , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Lagos/microbiología , Microscopía Electrónica , Mimiviridae/metabolismo , Mimiviridae/ultraestructura , Océanos y Mares , Filogenia , Biosíntesis de Proteínas , Proteoma/genética , ARN Ribosómico 16S/genética , ARN Viral/genética , Proteínas Virales/genética , Microbiología del Agua
10.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118120

RESUMEN

The inclusion of Mimiviridae members in the putative monophyletic nucleocytoplasmic large DNA virus (NCLDV) group is based on genomic and phylogenomic patterns. This shows that, along with other viral families, they share a set of genes known as core or "hallmark genes," including the gene for the major capsid protein (MCP). Although previous studies have suggested that the maturation of mimivirus MCP transcripts is dependent on splicing, there is little information about the processing of this transcript in other mimivirus isolates. Here we report the characterization of a new mimivirus isolate, called Kroon virus (KV) mimivirus. Analysis of the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates revealed a remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. In addition, sequencing of KV and Acanthamoeba polyphaga mimivirus (APMV) MCP transcripts has shown that inside the family, even related giant viruses may present different ways to process the MCP mRNA. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.IMPORTANCE Mimivirus isolates have been obtained by prospecting studies since 2003. Based on genomic and phylogenomic studies of conserved genes, these viruses have been clustered together with members of six other viral families. Although the major capsid protein (MCP) gene is an important member of the so-called "hallmark genes," there is little information about the processing and structure of this gene in many mimivirus isolates. In this work, we have analyzed the structure, synteny, and phylogenetic relationships of the MCP genes in many mimivirus isolates; these genes showed remarkable variation at position and types of intronic and exonic regions, even for mimiviruses belonging to the same lineage. These results contribute to the understanding of the genetic organization and evolution of the MCP gene in mimiviruses.


Asunto(s)
Proteínas de la Cápside/genética , Evolución Molecular , Regulación Viral de la Expresión Génica , Mimiviridae/genética , Empalme del ARN , Transcripción Genética , Genoma Viral , Mimiviridae/clasificación , Mimiviridae/aislamiento & purificación , Mimiviridae/ultraestructura , Filogenia , ARN Viral , Replicación Viral , Microbiología del Agua
11.
Front Microbiol ; 8: 1673, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912772

RESUMEN

For over a century, viruses have been known as the most abundant and diverse group of organisms on Earth, forming a virosphere. Based on extensive meta-analyses, we present, for the first time, a wide and complete overview of virus-host network, covering all known viral species. Our data indicate that most of known viral species, regardless of their genomic category, have an intriguingly narrow host range, infecting only 1 or 2 host species. Our data also show that the known virosphere has expanded based on viruses of human interest, related to economical, medical or biotechnological activities. In addition, we provide an overview of the distribution of viruses on different environments on Earth, based on meta-analyses of available metaviromic data, showing the contrasting ubiquity of head-tailed phages against the specificity of some viral groups in certain environments. Finally, we uncovered all human viral species, exploring their diversity and the most affected organic systems. The virus-host network presented here shows an anthropocentric view of the virology. It is therefore clear that a huge effort and change in perspective is necessary to see more than the tip of the iceberg when it comes to virology.

12.
Arch Virol ; 162(10): 3205-3207, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28667442

RESUMEN

In recent years, giant viruses belonging to the family Mimiviridae have been proposed to be infectious agents in humans. In this work we provide evidence of mimivirus genome and neutralizing antibodies detection in humans.


Asunto(s)
Anticuerpos Antivirales/sangre , Genoma Viral , Mimiviridae/aislamiento & purificación , Brasil , Humanos , Mimiviridae/genética
13.
Viruses ; 9(1)2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28117683

RESUMEN

For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses' evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters' evolutionary scenarios and propose the term "MEGA-box" to designate an ancestor promoter motif ('TATATAAAATTGA') that could be evolved gradually by nucleotides' gain and loss and point mutations.


Asunto(s)
Virus Gigantes/genética , Regiones Promotoras Genéticas , Transcripción Genética
14.
Curr Opin Microbiol ; 31: 9-15, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26820447

RESUMEN

Acanthamoeba are natural hosts for giant viruses and their life cycle comprises two stages: a trophozoite and a cryptobiotic cyst. Encystment involves a massive turnover of cellular components under molecular regulation. Giant viruses are able to infect only the trophozoite, while cysts are resistant to infection. Otherwise, upon infection, mimiviruses are able to prevent encystment. This review highlights the important points of Acanthamoeba and giant virus interactions regarding the encystment process. The existence of an acanthamoebal non-permissive cell for Acanthamoeba polyphaga mimivirus, the prototype member of the Mimivirus genus, is analyzed at the molecular and ecological levels, and compared to a similar phenomenon previously described for Emiliana huxleyi and its associated phycodnaviruses: the 'Cheshire Cat' escape strategy.


Asunto(s)
Acanthamoeba/virología , Virus Gigantes/genética , Interacciones Huésped-Patógeno/genética , Mimiviridae/genética , Enquistamiento de Parásito/genética , Transducción de Señal/genética , Trofozoítos/virología
15.
Front Microbiol ; 6: 1256, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635738

RESUMEN

It is well recognized that gene duplication/acquisition is a key factor for molecular evolution, being directly related to the emergence of new genetic variants. The importance of such phenomena can also be expanded to the viral world, with impacts on viral fitness and environmental adaptations. In this work we describe the isolation and characterization of Niemeyer virus, a new mimivirus isolate obtained from water samples of an urban lake in Brazil. Genomic data showed that Niemeyer harbors duplicated copies of three of its four aminoacyl-tRNA synthetase genes (cysteinyl, methionyl, and tyrosyl RS). Gene expression analysis showed that such duplications allowed significantly increased expression of methionyl and tyrosyl aaRS mRNA by Niemeyer in comparison to APMV. Remarkably, phylogenetic data revealed that Niemeyer duplicated gene pairs are different, each one clustering with a different group of mimivirus strains. Taken together, our results raise new questions about the origins and selective pressures involving events of aaRS gain and loss among mimiviruses.

16.
Viruses ; 7(7): 3483-99, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26131958

RESUMEN

Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%-99% similar, whereas Kroon virus had a low similarity (90%-91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.


Asunto(s)
Agua Dulce/virología , Genoma Viral , Mimiviridae/genética , Secuencia de Bases , Brasil , Mimiviridae/química , Mimiviridae/clasificación , Mimiviridae/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
17.
Front Microbiol ; 6: 539, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26082761

RESUMEN

The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.

18.
J Clin Virol ; 66: 62-5, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25866340

RESUMEN

BACKGROUND: Mimiviruses have been considered putative emerging pneumonia agents. Pneumonia is a leading cause of death related to infection throughout the world, with approximately 40% of cases presenting unknown etiology. Therefore, identifying new causative agents of community and nosocomial pneumonia is of major public health concern. OBJECTIVE: We evaluated the distribution of these viruses in samples collected from different environments of one of the largest hospitals in Brazilian Southeast. STUDY DESIGN: We analyzed, by molecular and virological approaches, the distribution of mimivirus in 242 samples collected from inanimate surfaces in different hospital facilities. RESULTS: A significant positivity of mimivirus in respiratory-isolation-facilities was observed (p<0.001). CONCLUSION: Although the role of mimivirus as etiological agents of pneumonia is still under investigation, our results demonstrates interesting correlations that strengthens the need for control over the occurrence of these viruses in hospital facilities.


Asunto(s)
Microbiología Ambiental , Mimiviridae/aislamiento & purificación , Brasil , Departamentos de Hospitales , Humanos , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular
19.
Arch Virol ; 160(2): 477-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25344898

RESUMEN

Viruses are ubiquitous organisms, but their role in the ecosystem and their prevalence are still poorly understood. Mimiviruses are extremely complex and large DNA viruses. Although metagenomic studies have suggested that members of the family Mimiviridae are abundant in oceans, there is a lack of information about the association of mimiviruses with marine organisms. In this work, we demonstrate by molecular and virological methods that oysters are excellent sources for mimiviruses isolation. Our data not only provide new information about the biology of these viruses but also raise questions regarding the role of oyster consumption as a putative source of mimivirus infection in humans.


Asunto(s)
Infecciones por Virus ADN/transmisión , Infecciones por Virus ADN/virología , Mimiviridae/aislamiento & purificación , Ostreidae/virología , Animales , Genes Virales , Variación Genética , Genoma Viral , Humanos , Mimiviridae/genética , Océanos y Mares , Filogenia
20.
J Virol ; 89(5): 2962-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520511

RESUMEN

Acanthamoeba is a genus of free-living amoebas distributed worldwide. Few studies have explored the interactions between these protozoa and their infecting giant virus, Acanthamoeba polyphaga mimivirus (APMV). Here we show that, once the amoebal encystment is triggered, trophozoites become significantly resistant to APMV. Otherwise, upon infection, APMV is able to interfere with the expression of a serine proteinase related to amoebal encystment and the encystment can no longer be triggered.


Asunto(s)
Acanthamoeba/enzimología , Acanthamoeba/virología , Interacciones Huésped-Parásitos , Mimiviridae/crecimiento & desarrollo , Serina Proteasas/biosíntesis , Esporas Protozoarias/crecimiento & desarrollo , Acanthamoeba/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA