Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39199719

RESUMEN

Administration of oxygen microbubbles (OMBs) has been shown to increase oxygen and decrease carbon dioxide in systemic circulation, as well as reduce lung inflammation and promote survival in preclinical models of hypoxia caused by lung injury. However, their impact on microenvironmental oxygenation remains unexplored. Herein, we investigated the effects of intraperitoneal administration of OMBs in anesthetized rats exposed to hypoxic ventilation (FiO2 = 0.14). Blood oxygenation and hemodynamics were evaluated over a 2 h time frame, and then organ and tissue samples were collected for hypoxic and metabolic analyses. Data showed that OMBs improved blood SaO2 (~14%) and alleviated tissue hypoxia within the microenvironment of the kidney and intestine at 2 h of hypoxia. Metabolomic analysis revealed OMBs induced metabolic differences in the cecum, liver, kidney, heart, red blood cells and plasma. Within the spleen and lung, principal component analysis showed a metabolic phenotype more comparable to the normoxic group than the hypoxic group. In the spleen, this shift was characterized by reduced levels of fatty acids and 2-hydroxygluterate, alongside increased expression of antioxidant enzymes such as glutathione and hypoxanthine. Interestingly, there was also a shuttle effect within the metabolism of the spleen from the tricarboxylic acid cycle to the glycolysis and pentose phosphate pathways. In the lung, metabolomic analysis revealed upregulation of phosphatidylethanolamine and phosphatidylcholine synthesis, indicating a potential indirect mechanism through which OMB administration may improve lung surfactant secretion and prevent alveolar collapse. In addition, cell-protective purine salvage was increased within the lung. In summary, oxygenation with intraperitoneal OMBs improves systemic blood and local tissue oxygenation, thereby shifting metabolomic profiles of the lung and spleen toward a healthier normoxic state.

2.
Sci Rep ; 14(1): 17036, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043894

RESUMEN

Microbubbles (MBs) combined with focused ultrasound (FUS) has emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery into the brain. However, the safety and biological consequences of BBB opening (BBBO) remain incompletely understood. This study aims to investigate the effects of two parameters mediating BBBO: microbubble volume dose (MVD) and mechanical index (MI). High-resolution MRI-guided FUS was employed in mouse brains to assess BBBO by manipulating these two parameters. Afterward, the sterile inflammatory response (SIR) was studied 6 h post-FUS treatment. Results demonstrated that both MVD and MI significantly influenced the extent of BBBO, with higher MVD and MI leading to increased permeability. Moreover, RNA sequencing revealed upregulation of major inflammatory pathways and immune cell infiltration after BBBO, indicating the presence and extent of SIR. Gene set enrichment analysis identified 12 gene sets associated with inflammatory responses that were significantly upregulated at higher MVD or MI. A therapeutic window was established between therapeutically relevant BBBO and the onset of SIR, providing operating regimes to avoid damage from stimulation of the NFκB pathway via TNFɑ signaling to apoptosis. These results contribute to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and further elucidate the underlying molecular mechanisms driving sterile inflammation.


Asunto(s)
Barrera Hematoencefálica , Inflamación , Microburbujas , Barrera Hematoencefálica/metabolismo , Animales , Ratones , Inflamación/metabolismo , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Encéfalo/metabolismo , Encéfalo/patología , Masculino
3.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746278

RESUMEN

Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB+FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNAseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 µm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 µm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.

4.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747324

RESUMEN

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Asunto(s)
Sustitutos de Huesos , Nanopartículas , Animales , Sustitutos de Huesos/química , Nanopartículas/química , Cerámica/química , Ensayo de Materiales , Durapatita/química , Ovinos , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X , Trasplante Óseo
5.
ACS Biomater Sci Eng ; 10(5): 3331-3342, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38600786

RESUMEN

Microbubbles (MBs) hold substantial promise for medical imaging and therapy; nonetheless, knowledge gaps persist between composition, structure, and in vivo performance, especially with respect to pharmacokinetics. Of particular interest is the role of the poly(ethylene glycol) (PEG) layer, which is thought to shield the MB against opsonization and rapid clearance but is also known to cause an antibody response upon multiple injections. The goal of this study was, therefore, to elucidate the role of the PEG layer in circulation persistence of MBs in the naïve animal (prior to an adaptive immune response). Here, we directly observe the number and size of individual MBs obtained from blood samples, unifying size and concentration into the microbubble volume dose (MVD) parameter. This approach enables direct evaluation of the pharmacokinetics of intact MBs, comprising both the lipid shell and gaseous core, rather than separately assessing the lipid or gas components. We examined the in vivo circulation persistence of 3 µm diameter phospholipid-coated MBs with three different mPEG2000 content: 2 mol % (mushroom), 5 mol % (intermediate), and 10 mol % (brush). MB size and concentration in the blood were evaluated by a hemocytometer analysis over 30 min following intravenous injections of 20 and 40 µL/kg MVD in Sprague-Dawley rats. Interestingly, pharmacokinetic analysis demonstrated that increasing PEG concentration on the MB surface resulted in faster clearance. This was evidenced by a 1.6-fold reduction in half-life and area under the curve (AUC) (p < 0.05) in the central compartment. Conversely, the AUC in the peripheral compartment increased with PEG density, suggesting enhanced MB trapping by the mononuclear phagocyte system. This was supported by an in vitro assay, which showed a significant rise in complement C3a activation with a higher PEG content. In conclusion, a minimal PEG concentration on the MB shell (mushroom configuration) was found to prolong circulation and mitigate immunogenicity.


Asunto(s)
Microburbujas , Polietilenglicoles , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Animales , Fosfolípidos/química , Ratas , Masculino , Ratas Sprague-Dawley
6.
J Control Release ; 365: 412-421, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000663

RESUMEN

Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Encéfalo/patología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/diagnóstico por imagen , Glioma/terapia , Glioma/patología , Microburbujas
7.
bioRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961395

RESUMEN

Microbubbles (MBs) combined with focused ultrasound (FUS) have emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery to the brain. However, the safety and biological consequences of BBB opening remain incompletely understood. This study investigates the effects of varying microbubble volume doses (MVD) and ultrasound mechanical indices (MI) on BBB opening and the sterile inflammatory response (SIR) using high-resolution ultra-high field MRI-guided FUS in mouse brains. The results demonstrate that both MVD and MI significantly influence the extent of BBB opening, with higher doses and mechanical indices leading to increased permeability. Moreover, RNA sequencing reveals upregulated inflammatory pathways and immune cell infiltration after BBB opening, suggesting the presence and extent of SIR. Gene set enrichment analysis identifies 12 gene sets associated with inflammatory responses that are upregulated at higher doses of MVD or MI. A therapeutic window is established between significant BBB opening and the onset of SIR, providing operating regimes for avoiding each three classes of increasing damage from stimulation of the NFκB pathway via TNFL signaling to apoptosis. This study contributes to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and sheds light on the underlying molecular mechanisms of the sterile inflammatory response. Significance Statement: The significance of this study lies in its comprehensive investigation of microbubble-facilitated focused ultrasound for blood-brain barrier (BBB) opening. By systematically exploring various combinations of microbubble volume doses and ultrasound mechanical indices, the study reveals their direct impact on the extent of BBB permeability and the induction of sterile inflammatory response (SIR). The establishment of a therapeutic window between significant BBB opening and the onset of SIR provides critical insights for safe and targeted drug delivery to the brain. These findings advance our understanding of the biological consequences of BBB opening and contribute to optimizing parameters for clinical applications, thus minimizing potential health risks, and maximizing the therapeutic potential of this technique.

8.
Neurooncol Adv ; 5(1): vdad111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795179

RESUMEN

Background: Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB opening, allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Methods: Mice were orthotopically injected with a patient-derived diffuse midline glioma (DMG) cell line, BT245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa peak negative pressure, 1 Hz pulse repetition frequency, 10-ms pulse length, 3 min treatment time)/(25 µL/kg, i.v.) targeting to the tumor location. Results: In animals receiving panobinostat (10 mg/kg, i.p.) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, without significant increase of the drug in the forebrain. In mice receiving 3 weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes (P = .01). Furthermore, we showed the first survival benefit from FUS/MB improved delivery increasing the mean survival from 21 to 31 days (P < .0001). Conclusions: Our study demonstrates that FUS-mediated BBB disruption can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

10.
Pharmaceutics ; 15(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376072

RESUMEN

Microbubbles are 1-10 µm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.

11.
Intensive Care Med Exp ; 11(1): 35, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37357222

RESUMEN

Inhalation injury can lead to pulmonary complications resulting in the development of respiratory distress and severe hypoxia. Respiratory distress is one of the major causes of death in critically ill patients with a reported mortality rate of up to 45%. The present study focuses on the effect of oxygen microbubble (OMB) infusion via the colon in a porcine model of smoke inhalation-induced lung injury. Juvenile female Duroc pigs (n = 6 colonic OMB, n = 6 no treatment) ranging from 39 to 51 kg in weight were exposed to smoke under general anesthesia for 2 h. Animals developed severe hypoxia 48 h after smoke inhalation as reflected by reduction in SpO2 to 66.3 ± 13.1% and PaO2 to 45.3 ± 7.6 mmHg, as well as bilateral diffuse infiltrates demonstrated on chest X-ray. Colonic OMB infusion (75-100 mL/kg dose) resulted in significant improvements in systemic oxygenation as demonstrated by an increase in PaO2 of 13.2 ± 4.7 mmHg and SpO2 of 15.2 ± 10.0% out to 2.5 h, compared to no-treatment control animals that experienced a decline in PaO2 of 8.2 ± 7.9 mmHg and SpO2 of 12.9 ± 18.7% over the same timeframe. Likewise, colonic OMB decreased PaCO2 and PmvCO2 by 19.7 ± 7.6 mmHg and 7.6 ± 6.7 mmHg, respectively, compared to controls that experienced increases in PaCO2 and PmvCO2 of 17.9 ± 11.7 mmHg and 18.3 ± 11.2 mmHg. We conclude that colonic delivery of OMB therapy has potential to treat patients experiencing severe hypoxemic respiratory failure.

12.
Ultrasound Med Biol ; 49(8): 1861-1866, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37246050

RESUMEN

OBJECTIVE: For the treatment of tumor hypoxia, microbubbles comprising oxygen as a majority component of the gas core with a stabilizing shell may be used to deliver and release oxygen locally at the tumor site through ultrasound destruction. Previous work has revealed differences in circulation half-life in vivo for perfluorocarbon-filled microbubbles, typically used as ultrasound imaging contrast agents, as a function of anesthetic carrier gas. These differences in circulation time in vivo were likely due to gas diffusion as a function of anesthetic carrier gas, among other variables. This work has motivated studies to evaluate the effect of anesthetic carrier gas on oxygen microbubble circulation dynamics. METHODS: Circulation time for oxygen microbubbles was derived from ultrasound image intensity obtained during longitudinal kidney imaging. Studies were constructed for rats anesthetized on inhaled isoflurane with either pure oxygen or medical air as the anesthetic carrier gas. RESULTS: Results indicated that oxygen microbubbles were highly visible via contrast-specific imaging. Marked signal enhancement and duration differences were observed between animals breathing air and oxygen. Perhaps counterintuitively, oxygen microbubbles disappeared from circulation significantly faster when the animals were breathing pure oxygen compared with medical air. This may be explained by nitrogen counterdiffusion from blood into the bubble, effectively changing the gas composition of the core, as has been observed in perfluorocarbon core microbubbles. CONCLUSION: Our findings suggest that the apparent longevity and persistence of oxygen microbubbles in circulation may not be reflective of oxygen delivery when the animal is anesthetized breathing air.


Asunto(s)
Anestésicos , Fluorocarburos , Ratas , Animales , Oxígeno , Fosfolípidos , Microburbujas , Ultrasonografía , Medios de Contraste
13.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066205

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest pediatric brainstem tumor and is difficult to treat with chemotherapy in part due to the blood-brain barrier (BBB). Focused ultrasound (FUS) and microbubbles (MBs) have been shown to cause BBB disruption (BBBD), allowing larger chemotherapeutics to enter the parenchyma. Panobinostat is an example of a promising in vitro agent in DIPG with poor clinical efficacy due to low BBB penetrance. In this study, we hypothesized that using FUS to disrupt the BBB allows higher concentrations of panobinostat to accumulate in the tumor, providing a therapeutic effect. Mice were orthotopically injected with a patient-derived DMG cell line, BT-245. MRI was used to guide FUS/MB (1.5 MHz, 0.615 MPa PNP, 1 Hz PRF, 10 ms PL, 3 min treatment time) / (25 µL/kg, IV) targeting to the tumor location. In animals receiving panobinostat (10 mg/kg, IP) in combination with FUS/MB, a 3-fold increase in tumor panobinostat concentration was observed, with only insignificant increase of the drug in the forebrain. In mice receiving three weekly treatments, the combination of panobinostat and FUS/MB led to a 71% reduction of tumor volumes by MRI ( p = 0.01). Furthermore, FUS/MB improved the mean survival from 21 to 31 days ( p < 0.0001). Our study demonstrates that FUS-mediated BBBD can increase the delivery of panobinostat to an orthotopic DMG tumor, providing a strong therapeutic effect and increased survival. One Sentence Summary: FUS and microbubbles can increase the delivery of panobinostat to a patient-derived xenograft (PDX) orthotopic DMG tumor, providing a strong therapeutic effect and increased survival.

14.
ACS Biomater Sci Eng ; 9(2): 991-1001, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36153974

RESUMEN

Ultrasound molecular imaging with targeted microbubbles (MBs) can be used to noninvasively diagnose, monitor, and study the progression of different endothelial-associated diseases. Acoustic radiation force (Frad) can initiate and enhance MB adhesion at the target site. The goal of this study was to elucidate the effects of various MB parameters on Frad targeting. Monodisperse or polydisperse MBs with the immune-stealth cloaked (buried)-ligand architecture were conjugated with targeting RGD or nonspecific isotype control RAD peptides and then pumped through an αvß3 integrin-coated microvessel phantom at a wall shear stress of 3.5 dyn/cm2. Targeting was assessed by measuring MB attachment for varying Frad time and frequency, as well as MB concentration and size distribution. We first confirmed that primary Frad is necessary to target the cloaked-ligand MBs. MB targeting increased monotonically with αvß3 integrin density and Frad time. MB attachment and, to a lesser extent specificity, also increased when driven by Frad near resonance. MB targeting increased with MB concentration, although a shift in behavior was observed with increasing MB-MB interactions and aggregations forming from secondary Frad effects as MB concentration was increased. These secondary Frad effects reduced targeting specificity. Finally, after having validated our approach by testing different parameters with the appropriate controls, we then determined the effects of monodispersity on adhesion efficiency and specific targeting. We observed that both MB targeting efficiency and specificity were greatly enhanced for monodisperse vs polydisperse MBs. Analysis of videomicroscopy images indicated that secondary Frad effects may have disproportionally inhibited targeting of polydisperse MBs. In conclusion, our in vitro results indicate that monodisperse MBs driven near resonance and at a low concentration (∼106 MB/mL) can be used to maximize the adhesion efficiency (up to 88%) and specificity of RGD-MB targeting.


Asunto(s)
Integrina beta3 , Microburbujas , Ligandos , Ultrasonografía/métodos , Oligopéptidos/química
15.
Langmuir ; 39(1): 168-176, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36524827

RESUMEN

Vaporizable endoskeletal droplets are solid hydrocarbons in liquid fluorocarbon droplets in which melting of the hydrocarbon phase leads to the vaporization of the fluorocarbon phase. In prior work, vaporization of the endoskeletal droplets was achieved thermally by heating the surrounding aqueous medium. In this work, we introduce a near-infrared (NIR) optically absorbing naphthalocyanine dye (zinc 2,11,20,29-tetra-tert-butyl-2,3-naphthalocynanine) into the solid hydrocarbon (eicosane, n-C20H42) core of liquid fluorocarbon (C5F12) drops suspended in an aqueous medium. Droplets with a uniform diameter of 11.7 ± 0.7 µm were formed using a flow-focusing microfluidic device. The solid hydrocarbon formed a crumpled spherical structure within the liquid fluorocarbon droplet. The photoactivation behavior of these dye-containing endoskeletal droplets was investigated using NIR laser irradiation. When exposed to a pulsed laser of 720 nm wavelength, the dye-containing droplets vaporized at an average laser fluence of 65 mJ/cm2, whereas blank droplets without the dye did not vaporize at any fluence up to 100 mJ/cm2. Furthermore, dye-loaded droplets with a smaller, polydisperse size distribution were prepared using a simple shaking method and studied in a flow phantom for their photoacoustic signal and ultrasound contrast imaging. These results demonstrate that dye-containing endoskeletal droplets can be made to vaporize by externally applied optical energy. Such droplets may be useful for a variety of photoacoustic applications for sensing, imaging, and therapy.


Asunto(s)
Fluorocarburos , Compuestos Orgánicos , Volatilización , Ultrasonografía , Fluorocarburos/química
17.
Pharmaceutics ; 14(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36145673

RESUMEN

Pharmaceutical delivery can be noninvasively targeted on-demand by microbubble (MB) assisted focused ultrasound (FUS). Passive cavitation detection (PCD) has become a useful method to obtain real-time feedback on MB activity due to a FUS pulse. Previous work has demonstrated the acoustic PCD response of MBs at a variety of acoustic parameters, but few have explored variations in microbubble parameters. The goal of this study was to determine the acoustic response of different MB size populations and concentrations. Four MB size distributions were prepared (2, 3, 5 µm diameter and polydisperse) and pulled through a 2% agar wall-less vessel phantom. FUS was applied by a 1.515 MHz geometrically focused transducer for 1 ms pulses at 1 Hz PRF and seven distinct mechanical indices (MI) ranging from 0.01 to 1.0 (0.0123 to 1.23 MPa PNP). We found that the onset of harmonic (HCD) and broadband cavitation dose (BCD) depends on the mechanical index, MB size and MB concentration. When matched for MI, the HCD and BCD rise, plateau, and decline as microbubble concentration is increased. Importantly, when microbubble size and concentration are combined into gas volume fraction, all four microbubble size distributions align to similar onset and peak; these results may help guide the planning and control of MB + FUS therapeutic procedures.

18.
Physiol Rep ; 10(17): e15451, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065853

RESUMEN

With a mortality rate of 46% before the onset of COVID-19, acute respiratory distress syndrome (ARDS) affected 200,000 people in the US, causing 75,000 deaths. Mortality rates in COVID-19 ARDS patients are currently at 39%. Extrapulmonary support for ARDS aims to supplement mechanical ventilation by providing life-sustaining oxygen to the patient. A new rapid-onset, human-sized pig ARDS model in a porcine intensive care unit (ICU) was developed. The pigs were nebulized intratracheally with a high dose (4 mg/kg) of the endotoxin lipopolysaccharide (LPS) over a 2 h duration to induce rapid-onset moderate-to-severe ARDS. They were then catheterized to monitor vitals and to evaluate the therapeutic effect of oxygenated microbubble (OMB) therapy delivered by intrathoracic (IT) or intraperitoneal (IP) administration. Post-LPS administration, the PaO2 value dropped below 70 mmHg, the PaO2 /FiO2 ratio dropped below 200 mmHg, and the heart rate increased, indicating rapidly developing (within 4 h) moderate-to-severe ARDS with tachycardia. The SpO2 and PaO2 of these LPS-injured pigs did not show significant improvement after OMB administration, as they did in our previous studies of the therapy on small animal models of ARDS injury. Furthermore, pigs receiving OMB or saline infusions had slightly lower survival than their ARDS counterparts. The OMB administration did not induce a statistically significant or clinically relevant therapeutic effect in this model; instead, both saline and OMB infusion appeared to lower survival rates slightly. This result is significant because it contradicts positive results from our previous small animal studies and places a limit on the efficacy of such treatments for larger animals under more severe respiratory distress. While OMB did not prove efficacious in this rapid-onset ARDS pig model, it may retain potential as a novel therapy for the usual presentation of ARDS in humans, which develops and progresses over days to weeks.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Animales , Humanos , Lipopolisacáridos/toxicidad , Microburbujas , Respiración Artificial , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/terapia , Porcinos
19.
Bioconjug Chem ; 33(6): 1106-1113, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35476906

RESUMEN

Microbubbles (1-10 µm diameter) have been used as conventional ultrasound contrast agents (UCAs) for applications in contrast-enhanced ultrasound (CEUS) imaging. Nanobubbles (<1 µm diameter) have recently been proposed as potential extravascular UCAs that can extravasate from the leaky vasculature of tumors or sites of inflammation. However, the echogenicity of nanobubbles for CEUS remains controversial owing to prior studies that have shown very low ultrasound backscatter. We hypothesize that microbubble contamination in nanobubble formulations may explain the discrepancy. To test our hypothesis, we examined the size distributions of lipid-coated nanobubble and microbubble suspensions using multiple sizing techniques, examined their echogenicity in an agar phantom with fundamental-mode CEUS at 7 MHz and 330 kPa peak negative pressure, and interpreted our results with simulations of the modified Rayleigh-Plesset model. We found that nanobubble formulations contained a small contamination of microbubbles. Once the contribution from these microbubbles is removed from the acoustic backscatter, the acoustic contrast of the nanobubbles was shown to be near noise levels. This result indicates that nanobubbles have limited utility as UCAs for CEUS.


Asunto(s)
Microburbujas , Neoplasias , Acústica , Medios de Contraste , Humanos , Ultrasonografía/métodos
20.
ACS Biomater Sci Eng ; 8(4): 1686-1695, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35357814

RESUMEN

Optimization of contrast-enhanced imaging and focused ultrasound therapy requires a comprehensive understanding of in vivo microbubble (MB) pharmacokinetics. Prior studies have focused pharmacokinetic analysis on indirect techniques, such as ultrasound imaging of the blood pool and gas chromatography of exhaled gases. The goal of this work was to measure the MB concentration directly in blood and correlate the pharmacokinetic parameters with the MB size and dose. MB volume dose (MVD) was chosen to combine the size distribution and number into a single-dose parameter. Different MB sizes (2, 3, and 5 µm diameter) at 5-40 µL/kg MVD were intravenously injected. Blood samples were withdrawn at different times (1-10 min) and analyzed by image processing. We found that for an MVD threshold < 40 µL/kg for 2 and 3 µm and <10 µL/kg for 5 µm, MB clearance followed first-order kinetics. When matching MVD, MBs of different sizes had comparable half-lives, indicating that gas dissolution and elimination by the lungs are the primary mechanisms for elimination. Above the MVD threshold, MB clearance followed biexponential kinetics, suggesting a second elimination mechanism mediated by organ retention, possibly in the lung, liver, and spleen. In conclusion, we present the first direct MB pharmacokinetic study, demonstrate the utility of MVD as a unified dose metric, and provide insights into the mechanisms of MB clearance from circulation.


Asunto(s)
Gases , Microburbujas , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA