Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34857648

RESUMEN

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Asunto(s)
Antimaláricos/farmacología , Artemisia/química , Artemisininas/farmacología , Extractos Vegetales/farmacología , Plasmodium/efectos de los fármacos , Antimaláricos/química , Artemisininas/química , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Hepatocitos/efectos de los fármacos , Hepatocitos/parasitología , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/parasitología , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/química , Plasmodium/crecimiento & desarrollo
2.
Eur J Med Chem ; 158: 68-81, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30199706

RESUMEN

Emergence of drug resistance and targeting all stages of the parasite life cycle are currently the major challenges in antimalarial chemotherapy. Molecular hybridization combining two scaffolds in a single molecule is an innovative strategy for achieving these goals. In this work, a series of novel quinoxaline 1,4-di-N-oxide hybrids containing either chloroquine or primaquine pharmacophores was designed, synthesized and tested against both chloroquine sensitive and multidrug resistant strains of Plasmodium falciparum. Only chloroquine-based compounds exhibited potent blood stage activity with compounds 4b and 4e being the most active and selective hybrids at this parasite stage. Based on their intraerythrocytic activity and selectivity or their chemical nature, seven hybrids were then evaluated against the liver stage of Plasmodium yoelii, Plasmodium berghei and Plasmodium falciparum infections. Compound 4b was the only chloroquine-quinoxaline 1,4-di-N-oxide hybrid with a moderate liver activity, whereas compound 6a and 6b were identified as the most active primaquine-based hybrids against exoerythrocytic stages, displaying enhanced liver activity against P. yoelii and P. berghei, respectively, and better SI values than primaquine. Although both primaquine-quinoxaline 1,4-di-N-oxide hybrids slightly reduced the infection of mosquitoes, they inhibited sporogony of P. berghei and compound 6a showed 92% blocking of transmission. In vivo liver efficacy assays revealed that compound 6a showed causal prophylactic activity affording parasitaemia reduction of up to 95% on day 4. Absence of genotoxicity and in vivo acute toxicity were also determined. These results suggest the approach of primaquine-quinoxaline 1,4-di-N-oxide hybrids as new potential dual-acting antimalarials for further investigation.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Cloroquina/análogos & derivados , Cloroquina/farmacología , Plasmodium/efectos de los fármacos , Primaquina/análogos & derivados , Primaquina/farmacología , Animales , Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Femenino , Células Hep G2 , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Ratones Endogámicos BALB C , Plasmodium/fisiología , Primaquina/uso terapéutico , Quinoxalinas/química , Quinoxalinas/farmacología , Quinoxalinas/uso terapéutico
3.
Cell Rep ; 22(11): 2951-2963, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539423

RESUMEN

Heterochromatin plays a central role in the process of immune evasion, pathogenesis, and transmission of the malaria parasite Plasmodium falciparum during blood stage infection. Here, we use ChIP sequencing to demonstrate that sporozoites from mosquito salivary glands expand heterochromatin at subtelomeric regions to silence blood-stage-specific genes. Our data also revealed that heterochromatin enrichment is predictive of the transcription status of clonally variant genes members that mediate cytoadhesion in blood stage parasites. A specific member (here called NF54varsporo) of the var gene family remains euchromatic, and the resultant PfEMP1 (NF54_SpzPfEMP1) is expressed at the sporozoite surface. NF54_SpzPfEMP1-specific antibodies efficiently block hepatocyte infection in a strain-specific manner. Furthermore, human volunteers immunized with infective sporozoites developed antibodies against NF54_SpzPfEMP1. Overall, we show that the epigenetic signature of var genes is reset in mosquito stages. Moreover, the identification of a strain-specific sporozoite PfEMP1 is highly relevant for vaccine design based on sporozoites.


Asunto(s)
Hepatocitos/inmunología , Proteínas Protozoarias/metabolismo , Esporozoítos/inmunología , Animales
4.
Cell Microbiol ; 19(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28256794

RESUMEN

Dormant liver stage forms (hypnozoites) of the malaria parasite Plasmodium vivax present major hurdles to control and eradicate infection. Despite major research efforts, the molecular composition of hypnozoites remains ill defined. Here, we applied a combination of state-of-the-art technologies to generate the first transcriptome of hypnozoites. We developed a robust laser dissection microscopy protocol to isolate individual Plasmodium cynomolgi hypnozoites and schizonts from infected monkey hepatocytes and optimized RNA-seq analysis to obtain the first transcriptomes of these stages. Comparative transcriptomic analysis identified 120 transcripts as being differentially expressed in the hypnozoite stage relative to the dividing liver schizont, with 69 and 51 mRNAs being up- or down-regulated, respectively, in the hypnozoites. This lead to the identification of potential markers of commitment to and maintenance of the dormant state of the hypnozoite including three transcriptional regulators of the ApiAP2 family, one of which is unique to P. cynomolgi and P. vivax, and the global translational repressor, eIF2a kinase eIK2, all of which are upregulated in the hypnozoite. Together, this work not only provides a primary experimentally-derived list of molecular markers of hypnozoites but also identifies transcriptional and posttranscriptional regulation of gene expression as potentially being key to establishing and maintaining quiescence.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Hígado/parasitología , Plasmodium cynomolgi/fisiología , Animales , Haplorrinos , Hepatocitos/parasitología , Captura por Microdisección con Láser
5.
Nat Commun ; 6: 7690, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26205537

RESUMEN

Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.


Asunto(s)
Modelos Animales de Enfermedad , Hígado/parasitología , Malaria/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium ovale/crecimiento & desarrollo , Animales , Transfusión de Eritrocitos , Femenino , Hepatocitos/trasplante , Humanos , Estadios del Ciclo de Vida , Masculino , Ratones Transgénicos , Esporozoítos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...