Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685328

RESUMEN

Studies on the ecotoxicity of doped zinc oxide nanoparticles (ZnO NPs) are recent, with the first publications starting in 2010. In this sense, this is the first study that comprehensively reviews the ecotoxicological effects of ZnO NPs doped with lanthanide elements to fill this literature gap. This research explores a multifaceted question at the intersection of nanotechnology, toxicology, and environmental science. Different types of dopants commonly used for ZnO doping were investigated in this review, focusing on the ecotoxicological effects of lanthanides as dopants. Bacteria were the main class of organisms used in ecotoxicological studies, since antimicrobial activity of these nanomaterials is extensively explored to combat the imminent problem of resistant bacteria, in addition to enabling the safe use of these nanomaterials for biomedical applications. Doping appears to exhibit greater efficacy when compared to undoped ZnO NPs in terms of antimicrobial effects; however, it cannot be said that it has no impact on non-target organisms. An extensive examination of the literature also establishes the importance and need to evaluate the effects of doped ZnO NPs on organisms from different environmental compartments in order to identify their potential impacts. We underscore the dearth of research information regarding the environmental toxicity/ecotoxicity of doped ZnO nanoparticles across various ecological levels, thereby limiting the extrapolation of findings to humans or other complex models. Therefore, we emphasize the urgency of a multi-parameter assessment for the development of sanitary and environmentally safe nanotechnologies.


Asunto(s)
Ecotoxicología , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Animales , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/química , Bacterias/efectos de los fármacos , Humanos
2.
Environ Toxicol Pharmacol ; 98: 104057, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592679

RESUMEN

The objective of this work was to evaluate the effects following exposure (96 h) of South American catfish (R. quelen) embryos to active ingredients and commercial formulations from atrazine and glyphosate, isolated and in mixtures, at environmentally relevant concentrations. While the survival rates were not affected, sublethal effects were evidenced after exposure. The most frequent deformities were fin damage and axial and thoracic damage. The mixture of active ingredients caused an increase in SOD and GST, differing from the treatment with the mixture of commercial formulations. The activity of AChE was significantly reduced following the treatment with the active ingredient atrazine and in the mixture of active ingredients. In general, herbicide mixtures were responsible for causing more toxic effects to R. quelen embryos. Therefore, these responses showed to be suitable biomarkers of herbicides' exposure, in addition to generating more environmentally relevant baseline data for re-stablishing safety levels of these substances in aquatic bodies.


Asunto(s)
Atrazina , Bagres , Herbicidas , Contaminantes Químicos del Agua , Animales , Atrazina/toxicidad , Herbicidas/toxicidad , Bagres/fisiología , América del Sur , Contaminantes Químicos del Agua/toxicidad , Glifosato
3.
Ecotoxicology ; 31(6): 884-896, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35585359

RESUMEN

The herbicides atrazine and glyphosate are used worldwide and their excessive usage results in the frequent presence of these pesticides in environmental compartments. We evaluated the effects of environmentally relevant concentrations of analytical standards and commercial formulations of atrazine (2 µg L-1) and glyphosate (65 µg L-1), isolated and in mixture (2 + 65 µg L-1) on the microcrustacean Daphnia magna. Through chronic exposure (21 days) of two generations, we observed effects on survival, reproductive capacity and responses of the antioxidant defense system (catalase) and biotransformation system (glutathione S-transferase). The survival of organisms was affected in the second generation (F1) with a mortality of 17% in the mixture of commercial formulations treatments. In the evaluation of the first generation (F0) we observed only effects on sexual maturation of organisms, while in the F1, changes were observed in all parameters evaluated. A statistical difference (p < 0.05) was also observed between the analytical standards and the commercial formulations for all parameters evaluated, indicating that other components present in the formulations can change the toxicity of products. We suggest that atrazine can modulate toxicity when mixed with glyphosate, as the standard analytical atrazine and mixture of analytical standards results were similar in most parameters. Given the difficulty in estimating effects of mixtures and considering that various stressors are found in the environment, our results support the need to carry out long-term studies and, above all, to verify what are the impacts across generations, so that the toxicity of products is not underestimated. Graphical abstract.


Asunto(s)
Atrazina , Herbicidas , Contaminantes Químicos del Agua , Animales , Atrazina/toxicidad , Daphnia , Agua Dulce , Glicina/análogos & derivados , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...