Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(12): eabm3230, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333567

RESUMEN

How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here, we applied metatranscriptomics to investigate microbial physiological responses to medium-term (8 years) and long-term (>50 years) subarctic grassland soil warming of +6°C. Besides indications for a community-wide up-regulation of centralmetabolic pathways and cell replication, we observed a down-regulation of the bacterial protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations result in cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6°C), further supported our conclusion. Down-regulating the protein biosynthesis machinery liberates energy and matter, allowing soil bacteria to maintain high metabolic activities and cell division rates even after decades of warming.

2.
Mol Ecol ; 31(1): 372-390, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676941

RESUMEN

Myxomycetes are terrestrial protists with many presumably cosmopolitan species dispersing via airborne spores. A truly cosmopolitan species would suffer from outbreeding depression hampering local adaptation, while locally adapted species with limited distribution would be at a higher risk of extinction in changing environments. Here, we investigate intraspecific genetic diversity and phylogeography of Physarum albescens over the entire Northern Hemisphere. We sequenced 324 field collections of fruit bodies for 1-3 genetic markers (SSU, EF1A, COI) and analysed 98 specimens with genotyping by sequencing. The structure of the three-gene phylogeny, SNP-based phylogeny, phylogenetic networks, and the observed recombination pattern of three independently inherited gene markers can be best explained by the presence of at least 18 reproductively isolated groups, which can be seen as cryptic species. In all intensively sampled regions and in many localities, members of several phylogroups coexisted. Some phylogroups were found to be abundant in only one region and completely absent in other well-studied regions, and thus may represent regional endemics. Our results demonstrate that the widely distributed myxomycete species Ph. albescens represents a complex of at least 18 cryptic species, and some of these seem to have a limited geographical distribution. In addition, the presence of groups of presumably clonal specimens suggests that sexual and asexual reproduction coexist in natural populations of myxomycetes.


Asunto(s)
Amebozoos , Physarum , Secuencia de Bases , Variación Genética , Genotipo , Filogenia
3.
FEMS Microbiol Ecol ; 96(11)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33016319

RESUMEN

The drainage of peatlands for their agricultural use leads to huge emissions of greenhouse gases. One sustainable alternative is the cultivation of peat mosses after rewetting ('Sphagnum farming'). Environmental parameters of such artificial systems may differ from those of natural Sphagnum ecosystems which host a rich fungal community. We studied the fungal community at a 4 ha Sphagnum farming field site in Northwestern Germany and compared it with that of natural Sphagnum ecosystems. Additionally, we asked if any fungi occur with potentially negative consequences for the commercial production and/or use of Sphagnum biomass. Samples were collected every 3 months within 1 year. High-throughput sequencing of the fungal ITS2 barcode was used to obtain a comprehensive community profile of the fungi. The dominant taxa in the fungal community of the Sphagnum farming field site were all commonly reported from natural Sphagnum ecosystems. While the taxonomic composition showed clear differences between seasons, a stable functional community profile was identified across seasons. Additionally, nutrient supply seems to affect composition of fungal community. Despite a rather high abundance of bryophyte parasites, and the occurrence of both Sphagnum-species-specific and general plant pathogens, their impact on the productivity and usage of Sphagnum biomass as raw material for growing media was considered to be low.


Asunto(s)
Micobioma , Sphagnopsida , Agricultura , Ecosistema , Hongos/genética , Alemania
4.
Microb Ecol ; 78(3): 764-780, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30903202

RESUMEN

We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Mixomicetos/aislamiento & purificación , Suelo/parasitología , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , ADN de Hongos/genética , ADN Protozoario/genética , Hongos/clasificación , Hongos/genética , Alemania , Mixomicetos/genética , Filogenia , ARN Ribosómico 18S/genética , Microbiología del Suelo
5.
Mol Ecol Resour ; 18(2): 306-318, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29024429

RESUMEN

Unicellular, eukaryotic organisms (protists) play a key role in soil food webs as major predators of microorganisms. However, due to the polyphyletic nature of protists, no single universal barcode can be established for this group, and the structure of many protistean communities remains unresolved. Plasmodial slime moulds (Myxogastria or Myxomycetes) stand out among protists by their formation of fruit bodies, which allow for a morphological species concept. By Sanger sequencing of a large collection of morphospecies, this study presents the largest database to date of dark-spored myxomycetes and evaluate a partial 18S SSU gene marker for species annotation. We identify and discuss the use of an intraspecific sequence similarity threshold of 99.1% for species differentiation (OTU picking) in environmental PCR studies (ePCR) and estimate a hidden diversity of putative species, exceeding those of described morphospecies by 99%. When applying the identified threshold to an ePCR data set (including sequences from both NGS and cloning), we find 64 OTUs of which 21.9% had a direct match (>99.1% similarity) to the database and the remaining had on average 90.2 ± 0.8% similarity to their best match, thus thought to represent undiscovered diversity of dark-spored myxomycetes.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Mixomicetos/clasificación , Mixomicetos/genética , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Filogenia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...