Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1412345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988814

RESUMEN

P21 is a protein secreted by all forms of Trypanosoma cruzi (T. cruzi) with recognized biological activities determined in studies using the recombinant form of the protein. In our recent study, we found that the ablation of P21 gene decreased Y strain axenic epimastigotes multiplication and increased intracellular replication of amastigotes in HeLa cells infected with metacyclic trypomastigotes. In the present study, we investigated the effect of P21 in vitro using C2C12 cell lines infected with tissue culture-derived trypomastigotes (TCT) of wild-type and P21 knockout (TcP21-/-) Y strain, and in vivo using an experimental model of T. cruzi infection in BALB/c mice. Our in-vitro results showed a significant decrease in the host cell invasion rate by TcP21-/- parasites as measured by Giemsa staining and cell count in bright light microscope. Quantitative polymerase chain reaction (qPCR) analysis showed that TcP21-/- parasites multiplied intracellularly to a higher extent than the scrambled parasites at 72h post-infection. In addition, we observed a higher egress of TcP21-/- trypomastigotes from C2C12 cells at 144h and 168h post-infection. Mice infected with Y strain TcP21-/- trypomastigotes displayed higher systemic parasitemia, heart tissue parasite burden, and several histopathological alterations in heart tissues compared to control animals infected with scrambled parasites. Therewith, we propose that P21 is important in the host-pathogen interaction during invasion, cell multiplication, and egress, and may be part of the mechanism that controls parasitism and promotes chronic infection without patent systemic parasitemia.


Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Chagas/parasitología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Ratones Endogámicos BALB C , Parasitemia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/metabolismo , Virulencia
2.
Immunobiology, v. 225,n. 3, 151904, jan. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2906

RESUMEN

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas’ disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cgama1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.

3.
Immunobiology ; 225(3): 151904, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17368

RESUMEN

B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas’ disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cgama1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.

4.
Chembiochem, v. 20, n. 18, p. 2390-2401, set. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3196

RESUMEN

Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP‐treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.

5.
J Inorg Biochem, v. 44, p. 111-120, jun. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2687

RESUMEN

Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuIICl2(dppm)2], where dppm=bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[RuII(n2-O2CC10H13)(dppm)2]PF6 (bbato), cis-[RuII(n2-O2CC7H7S)(dppm)2]PF6 (mtbato) and cis-[RuII(n2-O2CC7H7O2)(dppm)2]PF6 (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor. We report, for the first time, that hmxbato and precursor promoted an increase in reactive oxygen species production, depolarization of the mitochondrial membrane, DNA fragmentation, formation of a pre-apoptotic peak, alterations in parasite morphology and formation of autophagic vacuoles. Taken together, our results suggest that these ruthenium complexes cause parasite death by apoptosis. Thus, this work provides relevant knowledge on the activity of ruthenium(II) complexes against L. (L.) amazonensis. Such information will be essential for the exploitation of these complexes as future candidates for cutaneous leishmaniasis treatment.

6.
J Inorg Biochem ; 195: p. 1-12, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15866

RESUMEN

Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuIICl2(dppm)2], where dppm=bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[RuII(n2-O2CC10H13)(dppm)2]PF6 (bbato), cis-[RuII(n2-O2CC7H7S)(dppm)2]PF6 (mtbato) and cis-[RuII(n2-O2CC7H7O2)(dppm)2]PF6 (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor. We report, for the first time, that hmxbato and precursor promoted an increase in reactive oxygen species production, depolarization of the mitochondrial membrane, DNA fragmentation, formation of a pre-apoptotic peak, alterations in parasite morphology and formation of autophagic vacuoles. Taken together, our results suggest that these ruthenium complexes cause parasite death by apoptosis. Thus, this work provides relevant knowledge on the activity of ruthenium(II) complexes against L. (L.) amazonensis. Such information will be essential for the exploitation of these complexes as future candidates for cutaneous leishmaniasis treatment.

7.
Int J Biol Macromol, v. 118, part A, p. 311-319, out. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2529

RESUMEN

Herein we evaluated the genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) from Bothrops pauloensis, on breast cancer cells. BnSP-6 was able to induce a higher cytotoxic and genotoxic activity in MDA-MB-231 cells, when compared to MCF10A (a non-tumorigenic breast cell line), suggesting that this protein presented a possible preference for cancer cells. BnSP-6 inhibited MDA-MB-231 proliferation at 24, 48 and 72?h. In addition, BnSP-6 induced significant increase in the percentage of TUNEL-positive cells, a marker of DNA damage. To obtain novel insight into the direct DNA damage interference in MDA-MB-231 survival and proliferation, we evaluated cell cycle progression. BnSP-6 produced a significant decrease in 2N (G1) and an increase in the G2/M phase and this capacity is likely related to the modulation of expression of progression cell cycle-associated genes (CCND1, CCNE1, CDC25A, CHEK2, E2F1, CDH-1 and NF-kB). Taken together, these results indicate that BnSP-6 induces DNA damage in breast cancer cells and is an attractive model for developing innovative therapeutic agents against breast cancer.

8.
Int. J. Biol. Macromol. ; 118: p. 311-319, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15309

RESUMEN

Herein we evaluated the genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) from Bothrops pauloensis, on breast cancer cells. BnSP-6 was able to induce a higher cytotoxic and genotoxic activity in MDA-MB-231 cells, when compared to MCF10A (a non-tumorigenic breast cell line), suggesting that this protein presented a possible preference for cancer cells. BnSP-6 inhibited MDA-MB-231 proliferation at 24, 48 and 72?h. In addition, BnSP-6 induced significant increase in the percentage of TUNEL-positive cells, a marker of DNA damage. To obtain novel insight into the direct DNA damage interference in MDA-MB-231 survival and proliferation, we evaluated cell cycle progression. BnSP-6 produced a significant decrease in 2N (G1) and an increase in the G2/M phase and this capacity is likely related to the modulation of expression of progression cell cycle-associated genes (CCND1, CCNE1, CDC25A, CHEK2, E2F1, CDH-1 and NF-kB). Taken together, these results indicate that BnSP-6 induces DNA damage in breast cancer cells and is an attractive model for developing innovative therapeutic agents against breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA