Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376321

RESUMEN

The investigation of the behaviour of adhesive joints under high strain rates is an active area of research, primarily due to the widespread use of adhesives in various industries, including automotive manufacturing. Understanding how adhesives perform when subjected to high strain rates is crucial for designing vehicle structures. Additionally, it is particularly important to comprehend the behaviour of adhesive joints when exposed to elevated temperatures. Therefore, this study aims to analyse the impact of strain rate and temperature on the mixed-mode fracture characteristics of a polyurethane adhesive. To achieve this, mixed-mode bending tests were conducted on test specimens. These specimens were subjected to three different strain rates (0.2 mm/min, 200 mm/min, and 6000 mm/min) and tested at temperatures ranging from -30 °C to 60 °C. The crack size was measured using a compliance-based method during the tests. For temperatures above Tg, the maximum load supported by the specimen increased with an increasing loading rate. GI increased by a factor of 35 for an intermediate strain rate and 38 for a high strain rate from low temperature (-30 °C) to room temperature (23 °C). GII also increased for the same conditions by a factor of 25 and 95 times, respectively.

2.
Heliyon ; 9(4): e14751, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37035372

RESUMEN

Although the shipbuilding industry is constantly demanding new advanced joining solutions, adhesive technology is not as developed in the marine as compared to other industries. The main reason is the lack of specific knowledge that guarantees the durability of the bonded joints in optimal conditions during the life cycle of a ship. This work simulates in the laboratory a marine-like environment by immersing an adhesive in seawater and subjecting it to constant loading. The objective is to characterize the seawater absorption behavior and its consequences on the mechanical, thermal, and chemical properties of the adhesive after this aging process. Seawater ingress was determined through gravimetric tests at several load conditions of the tensile strength of the adhesive. Besides, absorption process was studied using Fick's Law, determining the diffusion coefficients. The thermal behavior was monitored with differential scanning calorimetry (DSC) and the chemical degradation was analyzed using Fourier transform infrared spectroscopy (FTIR). Also, the mechanical properties were determined by tensile tests. The surface of the adhesive (dried) was studied by Scanning Electron Microscopy (SEM) technique and the porosity was measured by physisorption with a high-performance adsorption analyzer. A numerical simulation was developed using Darcy's Law combined with continuity equation. The results show that application of loads and immersion in seawater until full saturation of seawater improve the mechanical properties of the adhesive, but it affects negatively to the glass transition temperature. This should be considered when designing adhesive bonding joints on ships.

3.
Polymers (Basel) ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850072

RESUMEN

The aim of this work is to analyze the difference between silicone/composite and silicone/metal interphases, both in terms of water diffusion behavior and failure of the aged joints. For that, silicone joints with two different suhbstrates were prepared. The substrates were polybutylene terephthalate with 30% of short glass fiber (PBT-GF30) and 6082-T6 aluminum. It is assumed that the water uptake of the joints is equal to the water uptake of the substrate, adhesive, and interphase. Therefore, knowing the first three, the last could be isolated. To study the water diffusion behavior of the complete joint, rectangular joints were prepared, immersed in water and their water uptake was measured. The water immersion was conducted at 70 °C. It was concluded that the aluminum/silicone joints absorbed more water through the interphase region than the PBT-GF30/silicone joints, since the difference between the expected water uptake and the experimentally measured mass gain is significantly higher, causing adhesive failure of the joint. The same was not observed in the PBT-GF30/silicone, with a more stable interphase, that does not absorb measurable quantities of water and always exhibits cohesive failure.

4.
Materials (Basel) ; 15(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36295230

RESUMEN

The automotive industry, driven by the desire to decrease the environmental impact of vehicles, is permanently seeking to develop lightweight structural components, which lead to lower gas emissions and energy consumption, reducing their carbon footprint. In parallel, adopting innovative, constructive solutions, which dispense non-recyclable and energy-intensive materials, can increase the footprint reduction. Thus, an increase in the use of renewable materials for structural applications, including wood and its by-products, has been observed over the last few decades. Furthermore, composite materials are often joined by using petroleum-based synthetic adhesives, which should be progressively replaced by eco-friendly bio-adhesives. In this study, novel densified wood and wood/cork composites, joined with a bio-adhesive, are proposed and characterised. The densification of the wood aims to enhance the mechanical properties of the natural material, with the purpose of improving the energy absorption of the wood/bio-adhesive joint. To mitigate delamination and the brittle behaviour of wood/cork agglomerates were introduced between the wood substrate and the bio-adhesive. Different configurations of single lap joints (SLJ) were manufactured to study the effect of the overlap length and loading rate on the performance of the joints, both in terms of failure load and energy absorption. Afterward, the joints were numerically simulated. The densification process was successful, although it represents an additional challenge in terms of surface flatness, because the bio-adhesive requires zero bondline thickness. The increase of the overlap had a positive impact on the energy absorption of the joint, and the addition of cork resulted in a more consistent failure mode and higher strain to failure. The numerical models developed had a good correlation with the experimental results.

5.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616439

RESUMEN

Over recent decades, the need to comply with environmental standards has become a concern in many industrial sectors. As a result, manufacturers have increased their use of eco-friendly, recycled, recyclable, and, overall, more sustainable materials and industrial techniques. One technique highly dependent on petroleum-based products, and at the edge of a paradigm change, is adhesive bonding. Adhesive bonding is often used to join composite materials and depends upon an adhesive to achieve the connection. However, the matrices of the composite materials and the adhesives used, as well as, in some cases, the composite fibres, are manufactured from petrochemical products. Efforts to use natural composites and adhesives are therefore ongoing. One composite that has proven to be promising is wood due to its high strength and stiffness (particularly when it is densified), formability, and durability. However, wood must be very carefully characterised since its properties can be variable, depending on the slope of the grains, irregularities (such as knots, shakes, or splits), and on the location and climate of each individual tree. Therefore, in addition to neat wood, wood composites may also be a promising option to increase sustainability, with more predictable properties. To bond wood or wooden composite substrates, bio-adhesives can be considered. These adhesives are now formulated with increasingly enhanced mechanical properties and are becoming promising alternatives at the structural application level. In this paper, wooden adhesive joints are surveyed considering bio-adhesives and wood-based substrates, taking into consideration the recent approaches to improve these base materials, accurately characterise them, and implement them in adhesive joints.

6.
Materials (Basel) ; 14(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33799962

RESUMEN

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...